You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The ubiquitous second messenger cyclic guanosine monophosphate (cGMP) plays an important role in metabolism and promotes brown adipocyte differentiation. We showed that ablation of the gene encoding vasodilator-stimulated phosphoprotein (VASP), a major downstream component of the cGMP signaling cascade, increased cellular cGMP content in brown and white adipocytes and mouse embryonic fibroblasts. VASP-deficient cells showed increased activation of Rac1, which in turn increased the abundance of the cGMP-producing enzyme soluble guanylyl cyclase (sGC), the main receptor for nitric oxide. Consequently, loss of VASP caused increased cGMP concentrations and enhanced brown adipocyte differentiation. Consistent with the in vitro data, we found increased energy expenditure in VASP-deficient mice and exposure to cold triggered enhanced lipolysis and cellular respiration in VASP-deficient brown fat cells. In addition, VASP-deficient mice exhibited increased development of brown-like adipocytes in white fat. Our data revealed that a VASP to Rac to sGC negative feedback loop limited cGMP production, thereby regulating adipogenesis and energy homeostasis.