You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Adenylyl cyclases (ACs) and guanylyl cyclases (GCs) produce the second messengers cyclic adenosine monophosphate and cyclic guanosine monophosphate, respectively. ACs and GCs are differentially regulated by intercellular signaling molecules and are implicated in various disease states, including cardiovascular diseases, aging, pain, and neuropsychiatric ailments. Hence, ACs and GCs constitute interesting drug targets. Because the catalytic sites of these enzymes are highly conserved, it is difficult to achieve isoform specificity. However, studies have provided evidence for the notion that regulatory allosteric domains in the vicinity of the catalytic site provide new opportunities for pharmacological intervention. Here, we summarize the current status of such research and discuss future directions in this exciting field.