You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Heterotrimeric GTP-binding protein (G protein)–coupled receptors (GPCRs) are the largest family of cell surface receptors; they allow cells to respond to a wide range of endogenous and environmental signals. Class C GPCRs represent a discrete group within the GPCR family, with distinct structural characteristics. Receptors belonging to this class—such as γ-aminobutyric acid type B (GABAB) receptors or metabotropic glutamate receptors (mGluRs)—form constitutive dimers. However, the conformational changes within such a dimeric receptor that are associated with agonist activation are still not well understood. A study by Hlavackova et al. investigates the role of dimer formation in mGluR1 activation. Using fluorescence resonance energy transfer approaches to assess inter- and intrasubunit conformational changes, the authors present an elegant study that sheds light on the kinetics of domain rearrangements in a class C GPCR upon ligand binding