You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The cytoplasmic phosphatase PTPN22 (protein tyrosine phosphatase nonreceptor type 22) plays a key role in regulating lymphocyte homeostasis, which ensures that the total number of lymphocytes in the periphery remains relatively constant. Mutations in PTPN22 confer an increased risk of developing autoimmune diseases; however, the precise function of PTPN22 and how mutations contribute to autoimmunity remain controversial. Loss-of-function mutations in PTPN22 are associated with increased numbers of effector T cells and autoreactive B cells in humans and mice; however, the complete absence of PTPN22 in mice does not result in spontaneous autoimmunity. We found that PTPN22 was a key regulator of regulatory T cell (Treg) function that fine-tuned the signaling of the T cell receptor and integrins. PTPN22−/− Tregs were more effective at immunosuppression than were wild-type Tregs, and they suppressed the activity of PTPN22−/− effector T cells, preventing autoimmunity. Compared to wild-type Tregs, PTPN22−/− Tregs produced increased amounts of the immunosuppressive cytokine interleukin-10 and had enhanced adhesive properties mediated by the integrin lymphocyte function–associated antigen-1, processes that are critical for Treg function. This previously undiscovered role of PTPN22 in regulating integrin signaling and Treg function suggests that PTPN22 may be a useful therapeutic target for manipulating Treg function in human disease.