You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The fission yeast Schizosaccharomyces pombe has more metazoan-like features than the budding yeast Saccharomyces cerevisiae, yet it has similarly facile genetics. We present a large-scale verified binary protein-protein interactome network, “StressNet,” based on high-throughput yeast two-hybrid screens of interacting proteins classified as part of stress response and signal transduction pathways in S. pombe. We performed systematic, cross-species interactome mapping using StressNet and a protein interactome network of orthologous proteins in S. cerevisiae. With cross-species comparative network studies, we detected a previously unidentified component (Snr1) of the S. pombe mitogen-activated protein kinase Sty1 pathway. Coimmunoprecipitation experiments showed that Snr1 interacted with Sty1 and that deletion of snr1 increased the sensitivity of S. pombe cells to stress. Comparison of StressNet with the interactome network of orthologous proteins in S. cerevisiae showed that most of the interactions among these stress response and signaling proteins are not conserved between species but are “rewired”; orthologous proteins have different binding partners in both species. In particular, transient interactions connecting proteins in different functional modules were more likely to be rewired than conserved. By directly testing interactions between proteins in one yeast species and their corresponding binding partners in the other yeast species with yeast two-hybrid assays, we found that about half of the interactions that are traditionally considered “conserved” form modified interaction interfaces that may potentially accommodate novel functions.