You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Hairy and enhancer of split-1 (HES1) is a basic helix-loop-helix transcription factor that is a key regulator of development and organogenesis. However, little is known about the role of HES1 after birth. Glucocorticoids, primary stress hormones that are essential for life, regulate numerous homeostatic processes that permit vertebrates to cope with physiological challenges. The molecular actions of glucocorticoids are mediated by glucocorticoid receptor–dependent regulation of nearly 25% of the genome. Here, we established a genome-wide molecular link between HES1 and glucocorticoid receptors that controls the ability of cells and animals to respond to stress. Glucocorticoid signaling rapidly and robustly silenced HES1 expression. This glucocorticoid-dependent repression of HES1 was necessary for the glucocorticoid receptor to regulate many of its target genes. Mice with conditional knockout of HES1 in the liver exhibited an expanded glucocorticoid receptor signaling profile and aberrant metabolic phenotype. Our results indicate that HES1 acts as a master repressor, the silencing of which is required for proper glucocorticoid signaling.