You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The BAALC/miR-3151 locus on chromosome 8q22 contains both the BAALC gene (for brain and acute leukemia, cytoplasmic) and miR-3151, which is located in intron 1 of BAALC. Older acute myeloid leukemia (AML) patients with high expression of both miR-3151 and the BAALC mRNA transcript have a low survival prognosis, and miR-3151 and BAALC expression is associated with poor survival independently of each other. We found that miR-3151 functioned as the oncogenic driver of the BAALC/miR-3151 locus. Increased production of miR-3151 reduced the apoptosis and chemosensitivity of AML cell lines and increased leukemogenesis in mice. Disruption of the TP53-mediated apoptosis pathway occurred in leukemia cells overexpressing miR-3151 and the miR-3151 bound to the 3′ untranslated region of TP53. In contrast, BAALC alone had only limited oncogenic activity. We found that miR-3151 contains its own regulatory element, thus partly uncoupling miR-3151 expression from that of the BAALC transcript. Both genes were bound and stimulated by a complex of the transcription factors SP1 and nuclear factor κB (SP1/NF-κB). Disruption of SP1/NF-κB binding reduced both miR-3151 and BAALC expression. However, expression of only BAALC, but not miR-3151, was stimulated by the transcription factor RUNX1, suggesting a mechanism for the partly discordant expression of miR-3151 and BAALC observed in AML patients. Similar to the AML cells, in melanoma cell lines, overexpression of miR-3151 reduced the abundance of TP53, and knockdown of miR-3151 increased caspase activity, whereas miR-3151 overexpression reduced caspase activity. Thus, this oncogenic miR-3151 may also have a role in solid tumors.