You are currently viewing the editor's summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Improving Therapy in Prostate Cancer
Blocking androgen receptor (AR) signaling is standard therapy for prostate cancer, but tumor growth often recurs. Li et al. examined the gene expression profile in patient samples of primary and metastatic prostate cancer from patients in which AR signaling was blocked. Metastatic disease, which is associated with androgen inhibitor–resistant relapse, correlated with increased expression of genes encoding proteins in the DNA damage response (DDR) and MYB expression. AR and c-Myb shared a subset of target genes that encode DDR proteins; thus, c-Myb may functionally substitute for AR in the regulation of their common DDR targets. Targeting proteins within the Myb-regulated network in combination with a poly[adenosine 5′-diphosphate (ADP)–ribose] polymerase (PARP) inhibitor, which compromises the DDR, generated synergistic lethality in prostate cancer cells in culture and in mouse xenografts, suggesting potential new options for prostate cancer patients.