You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Almost a decade has passed since first STIM, and later Orai, proteins were identified as the molecular constituents of store-operated calcium entry (SOCE). Their roles in immune function have been intensely investigated, but the roles of STIM and Orai in neuronal cells have been much less clear. Lalonde et al. show that when neurons are hyperpolarized or “at rest,” constitutive endoplasmic reticulum (ER) Ca2+ release leads to SOCE-mediated activation of neuronal transcription factors. Precisely why ER Ca2+ release is constitutive in neurons remains an important question. Irrespective of the answer, this observation provides an intriguing new perspective on why a relatively low-abundance, small-conductance channel such as Orai1 would be important in neurons, which contain a relative abundance of voltage-operated Ca2+ channels.