You are currently viewing the editor's summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Stepping Through the Transitions in Cell State
Cells can change their functional and morphological characteristics in response to changes in the environment. Epithelial cells can exhibit a type of plasticity called epithelial-to-mesenchymal transition (EMT), in which they transform from cells with tight contacts to neighboring cells and function as a barrier into motile cells that are not connected to their neighbors. This process is important during physiological processes, such as wound healing, and can also contribute to metastatic progression of cancer. Zhang et al. performed population and single-cell analysis of changes in the abundance of core regulators of EMT in a mammary epithelial cell line culture to test theoretical models by which EMT could occur. Their analysis confirmed that two sequential feedback loops, involving transcription factors and microRNAs, function as two cascading switches to control the discrete steps in EMT and identified the first step in this two-step process as the only readily reversible one for these cells.