ReviewCell Biology

Toward total synthesis of cell function: Reconstituting cell dynamics with synthetic biology

See allHide authors and affiliations

Science Signaling  09 Feb 2016:
Vol. 9, Issue 414, pp. re1
DOI: 10.1126/scisignal.aac4779


Synthetic biology approaches have contributed to our understanding of many cellular processes. In this Review, which contains 4 figures and 38 references, we show how synthetic biology approaches have revealed new insights into cellular proliferation, cellular differentiation, phagocytosis, and chemotaxis. The focus of this Review will be on case studies that highlight the applications of synthetic biology in biological experiments.


Biological phenomena, such as cellular differentiation and phagocytosis, are fundamental processes that enable cells to fulfill important physiological roles in multicellular organisms. In the field of synthetic biology, the study of these behaviors relies on the use of a broad range of molecular tools that enable the real-time manipulation and measurement of key components in the underlying signaling pathways. This Review will focus on a subset of synthetic biology tools known as bottom-up techniques, which use technologies such as optogenetics and chemically induced dimerization to reconstitute cellular behavior in cells. These techniques have been crucial not only in revealing causal relationships within signaling networks but also in identifying the minimal signaling components that are necessary for a given cellular function. We discuss studies that used these systems in a broad range of cellular and molecular phenomena, including the time-dependent modulation of protein activity in cellular proliferation and differentiation, the reconstitution of phagocytosis, the reconstitution of chemotaxis, and the regulation of actin reorganization. Finally, we discuss the potential contribution of synthetic biology to medicine.

View Full Text

Stay Connected to Science Signaling