Research ArticleMEDICINE

Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis

See allHide authors and affiliations

Science Signaling  23 Feb 2016:
Vol. 9, Issue 416, pp. ra21
DOI: 10.1126/scisignal.aac5472

A sugary inhibitor of liver disease

The accumulation of lipids in hepatocytes that occurs in nonalcoholic fatty liver disease (NAFLD) can result in liver failure or liver cancer. Trehalose is a ubiquitous sugar that is present in the food consumed by animals. DeBosch et al. determined that trehalose blocked glucose uptake into cells by inhibiting glucose transporters in the plasma membrane, which induced a “starvation”-like response that activated autophagy even in the presence of adequate nutrients and glucose. Furthermore, providing trehalose to mice that are a model of NAFLD prevented lipid accumulation in the liver. As noted by Mardones et al. in the associated Focus, trehalose, which has been previously under investigation to treat neurodegenerative diseases characterized by toxic protein aggregates, may be a “silver bullet” for treating diseases resulting from inadequate cellular degradative metabolism.


Trehalose is a naturally occurring disaccharide that has gained attention for its ability to induce cellular autophagy and mitigate diseases related to pathological protein aggregation. Despite decades of ubiquitous use as a nutraceutical, preservative, and humectant, its mechanism of action remains elusive. We showed that trehalose inhibited members of the SLC2A (also known as GLUT) family of glucose transporters. Trehalose-mediated inhibition of glucose transport induced AMPK (adenosine 5′-monophosphate–activated protein kinase)–dependent autophagy and regression of hepatic steatosis in vivo and a reduction in the accumulation of lipid droplets in primary murine hepatocyte cultures. Our data indicated that trehalose triggers beneficial cellular autophagy by inhibiting glucose transport.

View Full Text

Stay Connected to Science Signaling