You are currently viewing the editor's summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Tyrosine phosphorylation controls mitosis after all
The cell cycle is a carefully controlled process in which serine/threonine kinases play a large role. Abnormal progression or attenuation of cell cycling is implicated in the pathogenesis of various diseases, such as cancer, myocardial infarction, stroke, atherosclerosis, infection, inflammation, and neurodegenerative disorders. Caron et al. analyzed public databases for information about protein localization and tyrosine phosphorylation status in mitotic cells and devised a mitosis-associated tyrosine phosphorylation network. The extent of this network predicted that tyrosine-targeted phosphorylation plays a larger role in mitosis than previously appreciated. For example, in their network generated from data mining and in cultured cells, tyrosine phosphorylation decreased activation of Polo-like kinase 1 (PLK1), a serine/threonine kinase that promotes chromosome separation during anaphase and is often excessively abundant in cancers. The network provides a wealth of targets for exploration into cell cycle control in physiology and disease.