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Discovering relationships between
nuclear receptor signaling pathways, genes,
and tissues in Transcriptomine
Lauren B. Becnel,1*† Scott A. Ochsner,2* Yolanda F. Darlington,1 Apollo McOwiti,1

Wasula H. Kankanamge,1 Michael Dehart,1 Alexey Naumov,1‡ Neil J. McKenna2§

We previously developed a web tool, Transcriptomine, to explore expression profiling data sets involving small-
molecule or genetic manipulations of nuclear receptor signaling pathways. We describe advances in biocuration,
query interface design, and data visualization that enhance the discovery of uncharacterized biology in these path-
ways using this tool. Transcriptomine currently contains about 45 million data points encompassing more than 2000
experiments in a reference library of nearly 550 data sets retrieved from public archives and systematically curated.
To make the underlying data points more accessible to bench biologists, we classified experimental small molecules
and gene manipulations into signaling pathways and experimental tissues and cell lines into physiological systems
and organs. Incorporation of these mappings into Transcriptomine enables the user to readily evaluate tissue-
specific regulation of gene expression by nuclear receptor signaling pathways. Data points from animal and cell model
experiments and from clinical data sets elucidate the roles of nuclear receptor pathways in gene expression events
accompanying various normal and pathological cellular processes. In addition, data sets targeting non-nuclear re-
ceptor signaling pathways highlight transcriptional cross-talk between nuclear receptors and other signaling path-
ways. We demonstrate with specific examples how data points that exist in isolation in individual data sets validate
each other when connected and made accessible to the user in a single interface. In summary, Transcriptomine
allows bench biologists to routinely develop research hypotheses, validate experimental data, or model relation-
ships between signaling pathways, genes, and tissues.
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INTRODUCTION
Signaling pathways involving members of the nuclear receptor (NR)
superfamily of transcription factors, their regulatory small molecules
(ligands), and transcriptional coregulators coordinate regulation of gene
expression across multiple physiological systems and organs (1, 2).
Over the past 15 years, researchers in this field have frequently used
transcriptome-scale expression profiling approaches to characterize the
biology of NR signaling pathways (3). Although reuse of these data sets
has considerable potential value in filling gaps in knowledge in areas of
research that the original investigators did not envisage, various factors
have restricted such reuse. Rates of public deposition of these data sets
are low (4), and many data sets are available only in unpredictable and
inconsistent file types. Those that are available in public archives are
presented in formats that are intimidating to many bench biologists
and are frequently annotated without regard for metadata standards
(5). To make these data more routinely accessible to scientists, we pre-
viously developed a search tool, Transcriptomine, that aggregated and
annotated transcriptomic experiments relevant to NR signaling (6). Here,
we describe advances in the biocuration, scale of coverage, and usability
of our resource and illustrate its value with reference to a series of Use
Cases of evidence gathering, hypothesis generation, and model testing.
RESULTS
Transcriptomine allows bench scientists to discover
regulatory relationships between signaling pathways,
genes, and tissues
The Transcriptomine tool enables data set discovery, reuse, and attribu-
tion through two user interfaces (UIs): (i) browsable data set pages,
which connect data sets to their associated journal articles and to data
set search engines (Fig. 1, Data Set Pages), and (ii) the gene Regulation
Report, which allows visualization of biological relationships between
genes, signaling pathways, and tissues across the universe of data points
(Fig. 1, Regulation Reports).We designed aUI that would enable seam-
less, bidirectional navigation by the user between the data set pages and
Regulation Reports for a gene. The data set pages can be reached from
the associated research articles—where publishers support such links—
thereby extending the value of the original studies (Fig. 1A). Gene Reg-
ulation Reports are accessible through links embedded in gene lists in
the data set pages (Fig. 1B) from gene-centric knowledge databases such as
Entrez Gene, GeneCards, and the Pharmacogenomics Knowledgebase
(PharmGKB) (Fig. 1C) and through queries constructed in the query form
itself (https://goo.gl/oscYup) (Fig. 1D).GeneRegulationReport data points
link directly to a Fold Change Details (FCD) window that provides the
experimental details that led to a fold change value (Fig. 1E) and connects
it back to its parental data set (Fig. 1F). To complete the cycle of reuse and
attribution, the data set page allows one-click citation of the data set in re-
searchmanuscripts (Fig. 1G), which, in turn, drives discovery of data sets
through the reference lists of articles in which they are cited (Fig. 1H).

Classifying transcriptomic data sets by signaling pathway
and tissue or cell line enhances their accessibility to
bench researchers
The current version of Transcriptomine introduces two newly devel-
oped biocuration steps, namely, classifying experiments by signaling
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pathway and by biosample categories. Transcriptomic data sets in the
NR field are based on experiments involving small molecules (physio-
logical ligands, synthetic organics, and others) or geneticmanipulations,
such as knockout, knockdown, and mutant knockins, of NRs and cor-
egulators. This diversity in experiment design creates obstacles for the
user in evaluating evidence for regulation of a gene or gene set by a
signaling pathway or in comparing the transcriptomic end points of dif-
ferent signaling pathways. A simple scenario—determining if a gene of
interest is regulated by a given signaling pathway—poses two chal-
lenges. First, the user must have previous knowledge of all the small
molecules or regulatory proteins affecting the pathway, and second,
they must runmultiple independent queries for all possible experimen-
tal manipulations. To eliminate these obstacles to usability, we mapped
small molecules and their cognate NRs to a specific pathway (table S1).
Tissue specificity is a well-characterized facet of NR signaling pathways
(7). Although they perform experiments in specific cell lines or tissues,
cell biologists frequently interpret the results in the context of major
organs and their associated physiological systems, for example, the role
of adipose signaling pathways in metabolism or the role of uterine
signaling in female reproduction. To allow users to interact with Tran-
scriptomine using these familiar terms, we therefore assigned biological
samples (tissue or cell type) to specific organs (for example, prostate)
and their associated mammalian physiological system (for example,
male reproduction) (table S2).

The Transcriptomine data set directory enables browsing of
data sets and connects them to their associated
research articles
The latest version of Transcriptomine contains a reference library of
more than 500 data sets, encompassing more than 2000 experimental
contrasts and about 50 million data points, with broad coverage of
signaling pathways (Fig. 2A) and physiological systems and organs
(Fig. 2B). Data sets are browsed in a data set directory (https://goo.gl/
Becnel et al., Sci. Signal. 10, eaah6275 (2017) 25 April 2017
8ekO59) that can be filtered using drop-downmenus for any combina-
tion of signaling pathway, physiological system, and organ.

The data set pages provide for stable digital object identifier (DOI)–
based links to external sources, including the associated journal article
(Fig. 1A) and citations of data sets in article bibliographies (Fig. 1H)
(5). Data set pages (such as https://goo.gl/wEyHGs) contain detailed ex-
perimental information and are designed with the bench researcher in
mind (fig. S1). In addition to the data set name and description (see
Materials and Methods), the Overview section (fig. S1A, top) identifies
the repository and accession number of the primary data set. The
Overview section also allows one-click citation of the data set in a user’s
reference manager of choice and, to enable the user to readily identify
the context in which the data set was originally generated, includes the
full citation of the associated research article. Below the Overview sec-
tion is an Experiments section, partitioned into tabs for (i) Data Points
(fig. S1A, bottom), displaying the top induced (red) and repressed (blue)
data points in a scatterplot with fold change on the horizontal axis and
gene symbols [according to Human Genome Organization (HUGO)
gene nomenclature] on the vertical axis, and (ii) Conditions (fig. S1B,
top), displaying the experiment name and description and specific pa-
rameters such as small-molecule dose or concentration and duration of
exposure. A pull-down menu displaying experiment names allows the
user to toggle between different experiments of interest (fig. S1A,
bottom). Clicking on an individual data point of interest displays a
pop-up Fold Change Information (FCI) window containing a link to
the Regulation Report for that gene (see section Gene Regulation Re-
ports below and Fig. 1B). This feature allows the user to identify other
pathways that might affect a particular gene of interest. The utility of
this feature for hypothesis generation and evidence gathering is
illustrated in Use Case 3 below. A third section, Related Data Sets,
displays Transcriptomine data sets related by regulatory molecule or
biosample, options for which can be selected from another pull-down
menu (fig. S1B, bottom).
Query Transcriptomine 
Query genes in gene lists 

to discover uncharacterized biology

Research
literature

Query form
Ask questions across 
universe of data points

Fold Change
Details (FCD) window
Drill down on data points

for experimental detail
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Fig. 1. Transcriptomine enables a cycle of data set discovery, reuse, and attribution to illuminate uncharacterized biology of NR signaling pathways. (A to H) The UI
is designed to allow for seamless bidirectional navigation between browsable Data Set Pages and gene Regulation Reports. The Data Set Pages (browsable at the Data
Set Directory) link to associated journal articles (A) to extend the value of the original study. The Regulation Report is accessible from the data set pages (B), through
links embedded in external gene and small-molecule knowledge databases (C), or directly through a user-configurable query form (D) and enables hypothesis gen-
eration through visualization of pathway-gene-tissue relationships. Regulation Report data points link to detailed contextual windows (E) that, in turn, close the loop
back to the parental data set (F). Finally, the data set pages enable one-click citation in manuscripts and research proposals (G), which, in turn, drives further discovery
of data set citations in article reference lists (H).
2 of 12

https://goo.gl/8ekO59
https://goo.gl/8ekO59
https://goo.gl/wEyHGs
http://stke.sciencemag.org/


SC I ENCE S I GNAL ING | R E S EARCH RE SOURCE

 on S
eptem

ber 20, 2020
http://stke.sciencem

ag.org/
D

ow
nloaded from

 

The query form allows bench scientists to ask biological
questions in Transcriptomine
Rather than looking at a specific data set, users often have more open-
ended questions inmind.What signaling pathways regulate my gene or
function of interest? What genes are most frequently regulated by my
pathway of interest in different tissues? How does regulation of my
cellular function of interest by a given signaling pathway differ between
different tissues? Users can ask these types of questions using the Tran-
scriptomine query form (https://goo.gl/oscYup) (fig. S2). The pathway and
biosample biocurationdescribed above allowed us to simplify the query
form to three principal elements: pathway, biosample category, and
Becnel et al., Sci. Signal. 10, eaah6275 (2017) 25 April 2017
gene(s) of interest (fig. S2). Drop-downmenus representing the pathway
(fig. S2A) and biosample (fig. S2B) classes serve the dual purposes of (i)
conveying the overall scope of the resource and (ii) eliminating possible
user confusion or input error associatedwithmanual text input. Selecting
a given NR pathway option (fig. S2A) will retrieve all experiments that
map to that pathway, whereas selecting a biosample physiological system
displays an additional menu that allows the user to select individual
organs (fig. S2B). Options for Gene of Interest (fig. S2C) are as follows:
Any, Single Gene (text autocomplete allows for disambiguation of syno-
nyms to a single approved gene symbol), Gene List (upload of up to 5000
approved gene symbols), Gene Ontology Term [querying by a user-
specifiedGeneOntology (8) term], andDisease Term [querying by a dis-
ease curated by the Online Mendelian Inheritance in Man (OMIM)
curation initiative (9)]. A fourthmodule (fig. S2D) enablesmodification
of the default P value cutoff (≤0.05) for fold change results.

Gene Regulation Reports allow for varied perspectives on
pathway-gene-tissue relationships
In the following section, Transcriptomine data points are cited using
paired references in which the Transcriptomine data set is immediately
followed by its associated research article. Transcriptomine query
results are displayed in a gene Regulation Report (figs. S3 and S4), a
scatterplot similar to that used in the data set pages. The vertical axis
enables four views of the data points, of which Pathway is the default
for single gene queries. In the Pathway view for the Transcriptomine
GREB1 Regulation Report (https://goo.gl/dCHoA6) (fig. S3 and data file
S1, Query 1), top-level Pathways are organized into individual rows iden-
tified by a symbol representing the corresponding experiment regulatory
molecule(s) (see table S1 and Materials and Methods), making biological
patterns in thedata readily visible. For example, numerousdatapoints con-
firmed thepublished regulationofGREB1by the estrogen receptors (ERs)
and estrogens pathway (10), the androgen receptor (AR) and androgens
pathway (11), and the glucocorticoid receptor (GR) and glucocorticoids
pathway (12). In addition, the search results indicated previously unchar-
acterized regulation of GREB1 by the peroxisome proliferator–activated
receptors (PPARs) and fatty acid–regulated signaling pathway (fig. S3).

Segregation of data points by their corresponding regulatory mole-
cules within a given pathway allows for the comparison of the pharma-
cology of different small molecules with respect to a given gene in a
specific biosample. GREB1, for example, was shown by Transcripto-
mine to be induced in mammary gland model systems by the physio-
logical ER subfamily agonist 17b-estradiol (17bE2) (13, 14) and the
mammary estrogens genistein (15, 16) and PCB54 but was repressed
by the mammary anti-estrogens 4-hydroxytamoxifen and raloxifene
(17, 18), as well as by the pure anti-estrogen fulvestrant (19, 20). Simi-
larly, the inclusion of data points from knockout studies provides
information on the possible receptor dependence of a given pathway-
gene regulatory link. Illustrating this, repression (blue) and induction
(red) ofGREB1 inMCF-7 cells by depletion (21, 22) and overexpression
(23, 24), respectively, of ERa/ESR1 indicated that this receptor is re-
quired for estrogenic regulation of GREB1 in these cells (fig. S3). Note
that according to our previously proposed convention (25), tomake our
resource accessible to users in both the NR and non-NR fields, individ-
ual regulatory molecules (receptors and transcriptional coregulators)
are referred to using the symbol in common use in the field and the
species-appropriate approved symbol (for example, ERa/ESR1).

Coregulators are a diverse class of molecules that are required by
NRs for efficient regulation of gene expression (1, 26). Many coregula-
tors have broad specificity for multiple NRs, so to avoid unduly implying
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Fig. 2. Breakdown of Transcriptomine data sets by signaling pathway and
physiological system and organ. (A) Data sets relevant to ERs and estrogens
signaling constitute the largest pathway class in Transcriptomine, followed by,
in descending order, studies of signaling by PPARs and fatty acids, GR and glu-
cocorticoids, and AR and androgens. Reflecting cross-talk between NRs and cyto-
plasmic kinase pathways (141), data sets involving manipulations of cell surface
receptors, signaling enzymes, and non-NR transcription factors are an expanding
sector of the Transcriptomine data set library. FXR, farnesoid X receptor; TRs, thyroid
hormone receptors; VDR, vitamin D3 receptor; CAR, constitutive androstane receptor;
PXR, pregnane X receptor; ERR, ER-related receptor; RARs, retinoic acid receptors.
(B) Data sets involving female reproductive and metabolic tissue model systems
constitute nearly two-thirds of the database. The prominence of female reproduc-
tive biosamples reflects the popularity of mammary epithelial cell line models,
whereas the large number of metabolic biosamples is due, in part, to our curation
of data sets emerging from a TG-GATEs (142), a large-scale toxicotranscriptomic
screen in liver and kidney model systems. GI, gastrointestinal; CNS, central ner-
vous system; PNS, peripheral nervous system; UC, umbilical cord.
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a specific association with a pathway in regulation of a gene, data points
involving manipulations of individual coregulators are categorized in a
separate Coregulators section (fig. S3). This segregation allows visualiza-
tion of potential functional roles of coregulators in regulation of a given
gene or group of genes by a specificNRpathway. For example, repression
of GREB1 in HepG2 cells overexpressing a dominant-negative PGC1a/
PPARGC1A (27, 28) indicated that induction of GREB1 by the PPARs
and fatty acids signaling pathway involves the transcriptional coregulator
PGC1a/PPARGC1A (fig. S3 and data file S1, Query 1).

In addition to the Pathway view, the Regulation Report also allows
viewing of data points categorized by biosample, gene, or species. In the
Biosample view, individual rows containing all data points from
experiments in a specific tissue or cell line are organized into organs
and physiological systems (table S2). The Biosample view for the Tran-
scriptomine CA12 Regulation Report (https://goo.gl/PvmNsD) (fig. S4)
illustrates how this view helps the user identify tissue-specific regulation
of gene expression by a pathway. Consistent with its function in bone
(29), CA12 is shown in Transcriptomine to be frequently regulated in
bone model systems, principally U2OS cells. In contrast, the abundant
data points in mammary gland model systems visualized in the CA12
Regulation Report indicate a function in this organ that is less well char-
acterized. In the Gene view, alphabetical listing by symbol is the default
display formultigene queries. To provide a less visually cluttered UI, we
used the HUGO human gene symbol for all orthologs of a receptor.
Finally, the Species view enables comparison of patterns of regulation
of gene(s) by a pathway between different species.

Transcriptomic approaches are frequently used to evaluate the effect
of small-molecule or genetic manipulations on gene expression
programs involved in animal or cell models, such as the Zucker diabetic
rat or adipogenesis in the NIH 3T3-L1 cells (table S3).When collated in
a single interface, control experiments from these data sets are a conve-
nient reference for identifying transcripts that are consistently regulated
in these models. To enable such discovery, we categorized these data
points in a distinct section of the Regulation Report (fig. S3, Animal
and Cell Models). Use Case 2 (see below) illustrates the utility of these
model data points inmodelingNRpathway–biological process relation-
ships. In addition to thesemodel experiments, Transcriptomine contains
a small but growing number of small-scale, case-control studies docu-
menting transcriptomic signatures of pathological conditions. To enable
the discovery of relationships betweenNR signaling pathways anddisease
states, we mapped these data sets to the same parental terms used for
biosample (table S2) and model experiment mappings (table S3). In ad-
dition, to allow for the identification of cross-talk betweenNRs and other
signaling pathways, a dedicated section of the Regulation Report displays
data points from experiments involving small-molecule or genetic ma-
nipulation of receptors, enzymes, and transcription factors not related
to NR signaling pathways (fig. S3, Other Pathways). Use Case 3 (see be-
low) illustrates how these data points can be used to model potential
cross-talk between different signaling pathways.

Drilling down places data points in context and enables
their citation
The query form and Regulation Reports are designed to give users the
biological “big picture.” To drill down on specific data points, users can
first audit results by clicking on a data point in the Regulation Report to
display an FCIwindow (fig. S3) containing the gene symbol, fold change
and P value, experiment name, biosample, and species. Having identi-
fied a data point of interest, the user clicks on theMore Information link
in the FCIwindow to display the FCDwindow (Fig. 1E and fig. S5). The
Becnel et al., Sci. Signal. 10, eaah6275 (2017) 25 April 2017
FCD window contains an Experiment Information section, which de-
tails gene manipulations, or small-molecule dose and concentration or
duration of treatment. To place the experiment in the context of the
larger data set, additional information is provided in the Data Set
Information section, which includes the data set name and description
fields, which define any gene or small-molecule symbols present in the
experiment name and description. To encourage users to provide attri-
bution to the original data set creators, the FCD window provides for
one-click download of the data set citation into a user’s reference man-
ager (5). Finally, to close the “logical loop” between the datamining and
data set interfaces (Fig. 1F), the FCDwindow contains a link back to the
data set page from which the data point originated.

Use Cases demonstrate linking signaling pathways, gene,
and tissues using Transcriptomine
We next describe a series of Use Cases demonstrating the ability of
Transcriptomine Regulation Reports to initiate or substantiate research
hypotheses that address underappreciated relationships between NR
signaling pathways, genes, and tissues. Three of these (Use Cases 1, 2,
and 4) involve NR signaling pathways, whereas a fourth (Use Case 3)
involves a non-NR pathway to demonstrate the expanding utility of our
resource to investigators in other signaling disciplines. Links to the rel-
evant Transcriptomine gene Regulation Reports are embedded in the
text, and Use Cases are visually summarized (Fig. 3). The Supplemen-
taryMaterials contain summaries of all Use Case query parameters and
the corresponding gene list downloads (table S3). Transcriptomine data
points supporting each Use Case are cited using paired references in
which the Transcriptomine data set is immediately followed by its as-
sociated research article.

Use Case 1 shows how biology described in an article is indicated by
data points in data sets that predated the article but existed in isolation
from each other and were therefore difficult to integrate into a coherent
biological narrative. The unfolded protein response (UPR) is a highly
conserved program of gene expression regulated by multiple signaling
pathways that alleviate endoplasmic reticulum stress associatedwith the
accumulation of unfolded proteins (30). A 2015 article inOncogene de-
scribed how 17bE2 induced key components of the UPR, including
HSPA5, SERP1, and XBP1, in breast cancer cells in an ERa/ESR1-
dependent manner (31). The authors postulated that induction by 17bE2
of this pathwaymight constitute an adaptive stress response that promoted
resistance to tamoxifen therapy, and described it as a novel 17bE2-ERa/
ESR1-regulated pathway. Transcriptomine contained numerous data points
from multiple independent, pre-2015 data sets pointing to transcriptional
regulation by the ERs and estrogens pathway of components of the UPR
pathway, includingHSPA5 (https://goo.gl/5n3hW6) [mouse uterus (32–37)
and rat vagina (38, 39); data file S1, Query 2], XBP1 (https://goo.gl/MiJdTy)
[MCF-7 cells (21, 22, 40–45) andmouse testis (46, 47); data file S1, Query 3],
and SERP1 (https://goo.gl/XwFbPo) [MCF-7 cells (21, 22) andmouse uterus
(32–35); data file S1, Query 4] (Fig. 3, Use Case 1). Collectively, these data
points form a reasonable rationale for designing experiments to determine
the mechanistic basis for regulation of the UPR by the ERs and estrogens
signaling pathway. These queries also indicate regulation of UPR genes
by the AR and androgens pathway [HSPA5 in PC3 (48, 49) and LNCaP
(50, 51) cells andmouse liver (52, 53),XBP1 inmouse testis (46, 47), and
SERP1 in LNCaP cells (54–57) andmouse testis (46, 47)], by theGR and
glucocorticoids pathway [HSPA5 in mouse liver (58, 59) and rat kidney
(60, 61) and SERP1 inmouse bonemarrow–derivedmacrophages (62, 63)
and human HLE B-3 cells (64, 65)], and by the PPARs and fatty acids
pathway [XBP1 during 3T3-L1 adipogenesis (66, 67)].
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Use Case 2 focuses on the utility of Transcriptomine Animal and
Cell Model experiments in building confidence in a hypothesis previ-
ously uncharacterized in the research literature, for the role of two dis-
tinct NR signaling pathways in the regulation of 3T3-L1 adipogenesis.
Gap junction channels are cellular structures that play important roles
in cell-cell communication by enabling the propagation of chemical and
electrical signals. Although the literature on the relationship between
gap junctions and adipocyte differentiation is conflicting, a consensus
appears to be that the presence of gap junctions early during adipogen-
esis is required for synchronous initiation of the differentiation program
(68–70). Although published evidence links NR signaling pathways to
regulation of fat cell differentiation (71), there have been no published
studies linking such pathways to regulation of gap junction formation
during this process. Consistent with the increased expression in white
adipose tissue (WAT) of theGJA1 gene (72), the Transcriptomine Reg-
ulation Report for GJA1 in adipose tissue (https://goo.gl/HXBLA7)
(data file S1, Query 5) indicated that it is dynamically regulated during
3T3-L1 adipogenesis and that this regulation is mediated in part by
PPARg/PPARG, a master regulator of adipogenesis (66, 67, 73, 74).
Transcriptomine data points reflecting the induction of Gja1 in WAT
of mice lacking Smad3 (75, 76), a mediator of transforming growth
factor–b inhibition of adipocyte differentiation (77), provide further
evidence for a putative role for Gja1 in adipogenesis.
Becnel et al., Sci. Signal. 10, eaah6275 (2017) 25 April 2017
To find further evidence that thePPARs
and fatty acids pathway regulates adipo-
genesis in part by regulating gap junction
formation, we next asked Transcriptomine
whether other genes involved in gap junc-
tion formation were regulated in adipose
tissue. Versican (encoded by the Vcan
gene)modulates gap junction communica-
tion in 3T3-L1 cells (78). The Transcripto-
mineRegulationReport forVCAN inadipose
tissue (https://goo.gl/OBCqy9) (data file
S1, Query 6) suggested its regulation early
in 3T3-L1 adipogenesis (79,80) andPPARg/
PPARG-dependent repression in mature
3T3-L1 adipocytes (66, 67, 73, 74). Of possi-
ble translational relevance, data points from
clinical data sets highlighted differences in
VCAN expression in subcutaneous and
omental fat fromobese Pima Indian subjects
relative to lean individuals (81, 82).

An antagonistic relationship exists be-
tween gap junctions and members of the
extracellular matrix metalloproteinase
(MMP) family (83–85). If the emerging
hypothesis that GJA1 is induced during
adipogenesis in a PPARs and fatty acids
pathway–dependentmanner iswell founded,
we anticipated that genes in theMMP family
would be repressed during adipogenesis.
Transcriptomine queries showed that five
members of the MMP family [Mmp2
(https://goo.gl/VF7rn4), Mmp3 (https://goo.
gl/Y0tzvn), Mmp9 (https://goo.gl/KmD3p6),
Mmp14 (https://goo.gl/my63vI), and
Mmp23b (https://goo.gl/3AF9dx)] were sub-
ject to PPARg/Pparg-dependent repression
during adipogenesis (Fig. 3, Use Case 2, and data file S1, Queries 7 to 11)
(66, 67). Transcriptomine queries also indicated PPARg/Pparg-dependent
repression during 3T3-L1 adipogenesis of five members of the ADAMTS
(a disintegrin and metalloprotease with thrombospodin motif) family of
zinc proteases [Adamts1 (https://goo.gl/zvLyjm), Adamts2 (https://goo.
gl/8fvA8r), Adamts4 (https://goo.gl/4I3DII), Adamts5 (https://goo.gl/
Dmz9Se), and Adamts10 (https://goo.gl/rlQJMS)] (data file S1, Queries
12 to 16) (66, 67, 79, 80). Although gap junction proteins are not
known substrates for ADAMTS familymembers, the overlapping sen-
sitivity of ADAMTS and MMP family members to certain inhibitors
(86) suggests that thismay be the case. In support of our Transcriptomine-
generatedhypothesis, two studiesunknowntous thatwerepublishedwhile
our manuscript was in revision (87, 88) reported an antagonistic relation-
ship between ADAMTS1 and adipogenesis.

A final source of evidence for our hypothesis related to signaling by
RORa/Rora, which inhibits adipocyte differentiation (89, 90). Adipo-
genesis is also inhibited in mice overexpressing hepatic cholesterol sul-
fotransferase (91), which catalyzes the formation of cholesterol sulfate, a
RORa/Rora agonist (92). Given these observations, we anticipated that
RORa/Rora signaling would antagonize the expression of genes under
the control of the PPARs and fatty acids pathway in adipose tissue.
Consistentwith this, a total of 10 genes encodingMMP(data file S1,Queries
7 to 11) and ADAMTS (data file S1, Queries 12 to 16) metalloproteinase
Cell stress UPR

PPARγ/PPARG KO

XBP1, HSPA5, SERP1

3T3-L1 adipogenesis
High fat dietMET/HGF

Glucose starvation
AR & androgens 
ER & estrogens

Use Case 1

Preadipocytes Adipocytes

GJA1
+

MMPs & ADAMTSs

Use Case 2

PPARγ/
PPARG 

RORα//RORA

+

Rev-erbAα/NR1D1 agonism 
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NDRG1

MET/HGF
inhibition

Drug
resistance

+

NDRG1

MET/HGF
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NR1D1

Normal physiology

NDRG1

MET/HGF
inhibition

Drug
resistance

+

Anti-MET therapy in gastric cancer

Combination pro−Rev-erbAα/NR1D1
& anti-MET therapy in gastric cancer?

Spermine + O
+ H O

Spermidine +
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+
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+
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2

2 2
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Fig. 3. Use Cases illustrating development of research hypotheses in Transcriptomine. Use Case 1: ER and
estrogen signaling pathway regulates the UPR. KO, knockout. Use Case 2: Regulation of 3T3-L1 adipogenesis by the
PPARg/PPARG and RORa/RORA signaling pathways involves antagonistic regulation of gap junction formation. Use Case
3: Combination Rev-erbAa/NR1D1 agonism and MET/HGF antagonism in chemoresistant gastric cancer. Use Case 4: The
spermine oxidase (SMOX) gene is regulated by multiple NR signaling pathways in different physiological contexts. All
mechanistic relationships are inferred from data points in Transcriptomine data sets. Use Case parameters and
corresponding search results are contained in data file S1. Direct links to relevant gene Regulation Reports are em-
bedded in the respective sections in the main text.
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family members, as well as Vcan (data file S1, Query 6) were shown by
Transcriptomine to be repressed in RORa/RORA-depleted mouse
WAT (93, 94).

UseCase 3 illustrates the utility of the direct link to a geneRegulation
Report froma gene list on a data set page (Fig. 1B) to extend the scope of
a data set beyond its associated research article. It also emphasizes the
value of Transcriptomine to investigators of signaling pathways other
than those involving NRs. Aberrant activation of the pathwaymediated
by receptor tyrosine kinase MET and its physiological ligand, hepato-
cyte growth factor (HGF), occurs in gastric cancer (95–97). Although
MET pathway inhibitors have been evaluated as therapeutic options
in gastric cancer (95, 98), such strategies are frequently associated with
the acquisition of resistance. A 2009 Science Signaling article probing the
mechanistic basis of this resistance (99) included an expression profiling
data set evaluating the transcriptomic response of a panel of human gas-
tric cancer cell lines to the MET inhibitor PHA-665752 (PHA665)
(100). A gene that is not discussed in the article but is consistently in-
duced by PHA665 across all experiments in the associated data set is
n-Myc downstream-regulated gene 1 (NDRG1), which has been impli-
cated in tumorigenesis and metastasis in various cancers (101). The
potential role of NDRG1 in resistance of gastric cancer cells to MET
pathway inhibition implicated by these data points is suggested by the
role of NDRG1 in multidrug resistance in neuroblastoma cells (102).
Moreover, its stabilization of the epithelial state in nasopharyngeal
cancer cells (103) is consistent with the association between resistance
to theMET inhibitor KRC-108 and transition to an epithelial phenotype
(104). The Transcriptomine NDRG1 Regulation Report (https://goo.gl/
F76hnk) (accessed by clicking on the Transcriptomine query link in the
FCIwindow of one of theNDRG1 data points) highlighted repression of
Ndrg1 by the NR Rev-erbAa/Nr1d1 (data file S1, Query 17) (105, 106).
These data points are consistent with the transcriptional repression of
NDRG1 by iron (107) and the identity of heme as a Rev-erbAa/NR1D1
agonist (108, 109). Moreover, heme oxygenase, which depletes cellular
heme abundance, has been associated in gastric cancer cells with
resistance to apoptosis (110), itself a mechanism of cancer drug
resistance. Epidemiological evidence indicates an inverse relationship
between the incidence of gastric cancer and body iron stores (111). Col-
lectively, the Transcriptomine NDRG1 data points and the subsequent
focused literature mining suggest the hypothesis that repression by
Rev-erbAa/NR1D1 signaling of NDRG1 is a possible basis for combi-
nation therapy to circumvent acquisition of resistance to MET inhibi-
tors in gastric cancer (Fig. 3, Use Case 3).

Use Case 4 focuses on spermine oxidase, encoded by the SMOX
gene, which catalyzes the oxidation of spermine to spermidine, and is
an important component of the polyamine stress response (PSR) (Fig. 3,
Use Case 4) (112). The Transcriptomine SMOX Regulation Report
(https://goo.gl/tQzDxN) contained data points suggesting its regulation
bymultipleNR signaling pathways in various biological contexts (Fig. 3,
Use Case 4, and data file S1, Query 18). First, the RAR and retinoids
signaling section of the SMOX Regulation Report contained nearly 30
data points, indicating its induction during a time course study of all-
trans retinoic acid (ATRA) in HL-60 leukocytes (113, 114). This is in
contrast to a conventional literature search, which failed to locate
any published studies connecting SMOXwith the RARs and retinoids
signaling pathway. The RARs and retinoids pathway induces terminal
differentiation of HL-60 cells (115–117), and spermidine is required for
this differentiation (118, 119). TheTranscriptomine data points therefore
constitute a basis for the hypothesis that ATRA drives terminal differ-
entiation inHL-60 cells in part through induction of SMOX tomaintain
Becnel et al., Sci. Signal. 10, eaah6275 (2017) 25 April 2017
cellular spermidine concentrations. Second, data points in the SMOX
Regulation Report reflected its induction by the GR and glucocorticoids
signaling pathway and suggested amechanistic basis for the relationship
between glucocorticoids and the PSR (120). Finally, data points in the
AR and androgens pathway section of the SMOX Regulation Report
indicated repression of SMOX after disruption of AR signaling in skel-
etal muscle (121, 122). Given the contribution of androgen signaling to
skeletal muscle development (123) and the status of SMOX as a marker
of myogenic differentiation (124), Transcriptomine helped develop the
hypothesis that the promotion of skeletal muscle differentiation by the
AR and androgens pathway is mediated in part by induction of SMOX.

ChIP-Seq evidence from the Gene Transcription Regulatory
Database supports Transcriptomine Use Cases
Finally, we wished to supplement the transcriptomic evidence used to
model the signaling pathway–gene relationships described above using
cistromic evidence from the Gene Transcriptional Regulation Database
(GTRD) (125), a compendium of uniformly processed chromatin im-
munoprecipitation sequencing (ChIP-Seq) data sets from the National
Center for Biotechnology Information (NCBI) Short Read Archive. Of
the 15 receptor-gene or gene family relationships modeled in the Use
Cases, and forwhich comparable data sets were available inGTRD (reg-
ulation of GREB1 by PPARg/PPARG; regulation of genes encoding
UPR pathway members by ERa/ESR1, AR, GR/NR3C1, and PPARg/
PPARG; regulation of GJA1 and VCAN by PPARg/PPARG; regulation
of genes encoding MMP and ADAMTS family members by PPARg/
PPARG and RORa/RORA; regulation of NDRG1 by Rev-erbAa/NR1D1;
andregulationofSMOXbyGR/NR3C1,RARa/RARA,andAR), theGTRD
provided evidence of receptor promoter binding sites in 13. Specifical-
ly, GTRD queries identified binding sites for PPARg/PPARG in the
GREB1 gene (fig. S6A); for ERa/ESR1 in the human HSPA5 (fig. S6B),
XBP1 (fig. S6C), andSERP1 (fig. S6D) genes (Fig. 3,UseCase 1); forAR in
the HSPA5 (fig. S6E), XBP1 (fig. S6F), and SERP1 (fig. S6G) genes;
for GR/NR3C1 in the HSPA5 (fig. S6H) and SERP1 (fig. S6I) genes;
for PPARg/PPARG in the XBP1 gene (fig. S6J); for PPARg/PPARG in
the mouse Gja1 (fig. S6K) and human VCAN (fig. S6L), MMP3 (fig.
S6M), MMP14 (fig. S6N), ADAMTS1 (fig. S6O), ADAMTS2 (fig.
S6P), ADAMTS4 (fig. S6Q), and ADAMTS5 (fig. S6R) genes (Fig. 3,
Use Case 2); for Rev-erbAa/Nr1d1 in the mouse Ndrg1 gene (Fig. 3,
Use Case 3, and fig. S6S); and for GR/NR3C1 (fig. S6T), RARa/RARA
(fig. S6U), andAR (fig. S6V) in the human SMOX gene (Fig. 3, Use Case
4). Although no evidence was found in the GTRD for RORa/RORA
binding sites in genes in theMMPorADAMTS families, previous reports
of DNA binding–independent regulation of gene expression by RORa/
RORA (126) indicate that direct transrepression of PPARg/PPARG or
another pathway by RORa/RORA cannot be excluded as a mechanism
in these contexts.
DISCUSSION
Although other transcriptomic databases exist (127, 128), Transcripto-
mine differs from these by organizing the data points in the original data
sets into biologically meaningful pathway and biosample classes. Our
Use Cases demonstrate the routine but detailed insights into mechanis-
tically underdeveloped aspects of NR signaling biology that can be
achieved through reuse of appropriately biocurated transcriptomic data
sets. That transcriptomic data sets have biological value beyond the spe-
cific contexts in which they were originally generated is not entirely
surprising and is not the primary focus of this article. Rather, it is the
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ease and intuition with which their underlying data points are made
available to the community for reuse, sharing, and citation that repre-
sents the true value of Transcriptomine. It should be stressed that Tran-
scriptomine data points do not per se meet the rigorous standards for
unambiguously establishingmechanism and require detailed validation
in subsequent bench experiments. That said, the reduction in time and
effort realized throughTranscriptomine in locating, connecting, and in-
terpreting these data points greatly enhances their accessibility and us-
ability by the research community.

Aside from their enhancement of Transcriptomine usability, our
biocuration efforts have additional value in shedding light on the
relative volumes of data points representing different pathways and
physiological systems. Certain experimental paradigms, most notably
the study of the ERs and estrogens pathway in MCF-7 cells, are heavily
overrepresented among expression array data sets. Such redundancy is
not necessarily undesirable because the statistical power of numerous
independent data sets helps suppress the technical and biological noise
inherent in such experiments. That said, our high-level overview high-
lights large discrepancies in coverage of particular signaling pathways
and physiological systems by ‘omics data sets. Given the major public
health impact in Western nations of diseases of the renal system, for
example, the underrepresentation of archived data sets involving ma-
nipulations of the mineralocorticoid receptor (MR) and mineralo-
corticoid pathway (Fig. 1A), or performed in kidney model systems
(classified in Fig. 1B in the Other category), is surprising. Similarly,
publically archived ‘omics data sets relevant to VDR signaling in bone
are in remarkably short supply, whereas others targeting receptors such
as TR2 and TR4, for example, are virtually nonexistent.We suggest that
the disparity in coverage might benefit from the redistribution of
funding to generate and archive reference discovery-scale data sets for
signaling pathways that, although currently less well characterized, have
the potential to provide important insights into the regulation of phys-
iology by the NR superfamily.

Although recognized as a reliable surrogate for cellular protein abun-
dance (129, 130), global measures of transcript relative abundance con-
stitute only one of the ‘omics modalities currently available for
interrogating the biology of NR signaling pathways. Data sets docu-
menting the impact of NR pathway manipulations on transcription
factor DNA binding events (ChIP-Seq), protein-protein interactions
(interactomics), posttranslational modification (PTMomics), and cel-
lularmetabolite levels (metabolomics) are being generated in increasing
quantities. Equally, NR signaling pathways constitute only a subset of
the signal transduction pathways that affect mammalian cells, and in-
vestigators studying other pathways have been equally prodigious in their
generation of discovery-scale data sets. Adding to the growing volume of
‘omics-scale data sets, the clinical research community is generating and
making publically available discovery-scale profiles of molecular events
accompanying pathogenesis in cancer and other disease states (131). The
biocuration and web design principles outlined in this paper are read-
ily abstractable to integration of these diverse classes of ‘omics data sets
and, pending future funding, will support expansion of our resource
into a pan-omics discovery tool for cellular signaling pathways and hu-
man disease.
MATERIALS AND METHODS
Designation of a data set
Designation of a group of experiments as a data set occurs on a case-by-
case basis after closely studying the associated publication. In general, a
Becnel et al., Sci. Signal. 10, eaah6275 (2017) 25 April 2017
data set is defined as a group of experiments associated with a single
PubMed Identifier (PMID) in a single unique biosample. The term bio-
samplewas adopted to align our terminologywith those currently in use
by NCBI (132) and European Bioinformatics Institute (133) and refers
here to the tissue or cell type from which the assay starting material (in
the case of transcriptomic data sets, mRNA) was derived. The excep-
tions to this rule are where the data set is specifically designed to com-
pare the transcriptomes of two ormore distinct biosamples. On occasion,
however, GEO data set depositions contain groups of experiments from
twodifferent biosamples that bear no relation to each other in the context
of the associated article. In these instances, experiments fromdistinct bio-
samples are treated as distinct data sets, with the same PMID.

Data set naming convention
Data set names contain four key elements: (i) the ‘omics category of the
data set: currently predominantly transcriptomic but positioned for ex-
pansion into other ‘omics data set categories; (ii) key regulatory mole-
cules (full names spelled out along with familiar and approved symbols,
where these exist, and which are used in the data set description and in
its constituent experiment names and descriptions); (iii) a brief reference
to the organ or organ system—providing either the cell line name or the
organ or tissue name for animal studies; and (iv) where appropriate, a
reference to specific data set designs (for example, time course or dose
dependence).

Data set description convention
Data set descriptions provide the orientation and exposition required
for a user to place the experimental results in a clear biological context:
This is particularly important in the case of animal and cell models with
which the user may not be familiar. In addition to enhancing their dis-
coverability through text-based search engines, the adoption of these
semantic standards for data set names and descriptions is designed to
ensure a consistent, predictable experience for users of Transcriptomine
as they browse from one data set to the next. This is in contrast to the
names of the primary archived data sets, which are often simply the
name of the associated article, and often give only an impression of
the overall experimental design.

Experiment naming convention
Disambiguation of experiment names in the Nuclear Receptor Sig-
naling Atlas (NURSA) transcriptomic data sets is an essential part of
the user experience, for example, when experiment names are viewed
side by side in the gene list drop-down on individual data set pages or
when fold changes are compared in a Transcriptomine scatterplot.
Equally, removing redundancy in experiment namesmakes for a cleaner,
less visually clutteredUI. To accommodate the high degree of complexity
in experimental design in a consistent human- and machine-readable
manner, we developed an experiment naming convention in which up
to four defined elements are combined to convey the essential elements of
an experimental contrast while making the experiment name unique
within a specific data set (table S4). The first element is the regulatory
molecule core contrast. Regulatory molecules are small molecules or
genes subjected to one or more manipulations, identified using codes
(table S5). Genes in the NR signaling field are referred to using familiar
symbols and by, with increasing frequency, their approved gene symbols.
Accordingly, genes are identified using the namemost commonly in use
in the field and the species-appropriate approved gene symbol. The sec-
ond element is the small-molecule treatment concentration/dose and du-
ration. Small molecule–regulated transcriptomes are often compared
7 of 12
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across multiple concentrations and doses and durations of treatment,
each represented by an individual experiment in a larger data set. In these
experiment names, the regulatorymolecule is separated by a pipe (|) from
the concentration/dose and duration information. The third element re-
lates to molecules on both sides of a contrast. Experimental contrasts are
often set up with molecules on both sides of the contrast to provide for
comparison of a given differential expression data point between two
or more biological contexts. Molecules that appear on both sides of the
contrast are indicated in parentheses after the core contrast (and the
Concentration/Dose and Duration, if present), along with a manipula-
tion code as required.Multiple molecules are separated by a “+” sign. In
the case of data sets comparing gene manipulations with the wild-type
state, control experiments are designated (WT) to indicate an animal
wild-type for the gene of interest. The fourth element relates to Addi-
tional Disambiguators, which appear after a dash (-) at the end of the
Experiment Name to make an Experiment Name unique within a Data
set. Examples of additional disambiguators include an abbreviated bio-
sample, duration, gender, strain, or some other relevant annotations.

Receptor-ligand biocuration
Where available, we adopted mappings curated by the International
Union of Pharmacology Guide to Pharmacology (GtoPdb) resource
(134) or DrugBank (135). Where mappings were not available from ei-
ther of these resources, we created these de novo based on biocuration of
the literature on a specific ligand or regulatory small molecule (136).

Biosample (tissue and cell line) biocuration
Biosample biocuration adopts a practical, functional approach that is
predicated less upon the anatomical origin of a particular organ or tissue
andmore on its systemic physiological function of its constituent tissues
and cell types. Leukocytes, for example, are located primarily in the
cardiovascular compartment, but are almost invariably studied in the
context of the immune system, and are classified as such. Biosamples
occasionally undergo modifications designed to recapitulate a specific
functional or physiological context—for example, treatment of cells with
adipogenic (66) or inflammatory (137) chemical cocktails. To suppress
complexity and clutter in the query and visualization UIs, such modifi-
cations are not encoded in the biosample vocabulary but rather are de-
scribed in detail in the Experiment-level metadata section of Materials
and Methods.

Regulatory molecule unique identifiers
Experiments are mapped to regulatory molecules using unique identi-
fiers for small-molecule (PubChem) or gene (Entrez Gene ID) manip-
ulations. Similarly, all experiments are mapped to unique identifiers for
major anatomical and cell ontologies, including UBERON (138), CLO
(139), and BRENDA (140).

Experiment descriptions
Experiment descriptions are assigned using a systematic approach simi-
lar to that adopted for the description of their parent data set, which
provides for a consistent and predictable user experience when brows-
ing between different experiments (fig. S1B).

Experiment Numbers
The assignment of Experiment Numbers to Experiments is an impor-
tant step in the annotation and curation process because it determines
how experiments will be grouped relative to each other in the UI, for
example, in the pull-down menus that will be used to browse the indi-
Becnel et al., Sci. Signal. 10, eaah6275 (2017) 25 April 2017
vidual gene lists (fig. S1B). The order of display of experiments is par-
ticularly important in data sets documenting the dose/concentration or
time dependence of a given small molecule–regulated transcriptome.

NURSA web application
The NURSA hub is a gene-centric Java Enterprise Edition 6, web-based
application around which other gene, RNA, protein, drug/ligand, clin-
ical trial, disease, and other data from dozens of external databases are
collected. This resource was redesigned to improve the UI and experi-
ence, particularly through implementation of responsive design frame-
works. Transcriptomine is one component of this resource and links
with NURSA Molecule pages, on which gene, RNA, protein, disease,
and other data are summarized, andData Set pages. All software is free-
ly available at www.github.com/BCM-DLDCC/nursa.

After undergoing semiautomated processed and biocuration as de-
scribed above, the data and annotations are stored in NURSA’s Oracle
11g database. RESTful web services expose Transcriptomine data,
which are served to responsively designed views in the UI, were created
using a Flat UI Toolkit with a combination of JavaScript, D3.JS, AJAX,
HTML5, and CSS3. JavaServer Faces and PrimeFaces are the primary
technologies behind the UI. Transcriptomine has been optimized for
Firefox 24+, Chrome 30+, Safari 5.1.9+, and Internet Explorer 9+, with
validations performed in BrowserStack and load testing in LoadUIWeb.
XML describing each data set and experiment is generated and
submitted to CrossRef to mint DOIs.

Programmatic access through API
Application programming interface (API) documentation is avail-
able on the NURSA website at www.nursa.org/nursa/rs/index.jsf.

Literature searches
All literature searches carried out in developing the Use Cases involved
reasonable effort on the part of the curator and employed resources typ-
ically used by bench scientists, such as PubMed and Google.
SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/10/476/eaah6275/DC1
Fig. S1. The NURSA data set page.
Fig. S2. Transcriptomine query form.
Fig. S3. Transcriptomine GREB1 Regulation Report (Pathway view).
Fig. S4. Transcriptomine CA12 Regulation Report (Biosample view).
Fig. S5. FCD window.
Fig. S6. Corroborating receptor promoter binding evidence from the GTRD.
Table S1. Receptor and small-molecule signaling pathway mappings.
Table S2. Cell line and tissue biosample mappings to physiological systems and organs.
Table S3. Examples of animal and cell models and clinical data sets.
Table S4. Experiment naming convention.
Table S5. Nonstandard abbreviations in NURSA experiment names.
Data file S1. Use Case Query parameters and search results.
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authors can be expanded to other pathways and types of 'omics data sets.
different organs or physiological systems and to visualize pathway-gene-tissue relationships. The approach used by the
cross-reference information about how different genetic or pharmacological manipulations affect gene expression in 
complement data from the published scientific literature. The resource curates more than 500 data sets to allow users to
receptor pathway data sets. This tool has been redesigned to be easily used by bench scientists to access and 

. provide an updated version of Transcriptomine, a data-mining web tool that focuses on nuclearet alfindings. Becnel 
presented in disparate contexts and formats, making it difficult to draw connections between different researchers'
in which they were generated and for independently validating unrelated studies. However, data are often generated and 

Transcriptomic data are potentially useful for generating mechanistic hypotheses beyond the original experiment
Data mining to understand nuclear receptor signaling
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