
SC I ENCE S I GNAL ING | R E S EARCH ART I C L E
CANCER THERAPY
1Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
2Department of Clinical Pathology andGenetics, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
*Corresponding author. Email: bengt.hallberg@gu.se

Umapathy et al., Sci. Signal. 10, eaam7550 (2017) 28 November 2017
Copyright © 2017

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim

to original U.S.

Government Works
http://s
D

ow
nloaded from

 

MEK inhibitor trametinib does not prevent the
growth of anaplastic lymphoma kinase
(ALK)–addicted neuroblastomas
Ganesh Umapathy,1 Jikui Guan,1 Dan E. Gustafsson,1 Niloufar Javanmardi,2

Diana Cervantes-Madrid,1 Anna Djos,2 Tommy Martinsson,2 Ruth H. Palmer,1 Bengt Hallberg1*

Activation of the RAS-RAF-MEK-ERK signaling pathway is implicated in driving the initiation and progression of
multiple cancers. Several inhibitors targeting the RAS-MAPK pathway are clinically approved as single- or polyagent
therapies for patients with specific types of cancer. One example is theMEK inhibitor trametinib, which is included
as a rational polytherapy strategy for treating EML4-ALK–positive, EGFR-activated, or KRAS-mutant lung cancers
and neuroblastomas that also contain activating mutations in the RAS-MAPK pathway. In addition, in neuroblas-
toma, a heterogeneous disease, relapse cases display an increased rate of mutations in ALK, NRAS, and NF1,
leading to increased activation of RAS-MAPK signaling. Co-targeting ALK and the RAS-MAPK pathway is an attract-
ive option, because monotherapies have not yet produced effective results in ALK-addicted neuroblastoma pa-
tients. We evaluated the response of neuroblastoma cell lines to MEK-ERK pathway inhibition by trametinib. In
contrast to RAS-MAPK pathway-mutated neuroblastoma cell lines, ALK-addicted neuroblastoma cells treatedwith
trametinib showed increased activation (inferred by phosphorylation) of the kinases AKT and ERK5. This feedback
response was mediated by the mammalian target of rapamycin complex 2–associated protein SIN1, resulting in
increased survival and proliferation that depended on AKT signaling. In xenografts in mice, trametinib inhibited
the growth of EML4-ALK–positive non–small cell lung cancer and RAS-mutant neuroblastoma but not ALK-
addicted neuroblastoma. Thus, our results advise against the seemingly rational option of using MEK inhibitors
to treat ALK-addicted neuroblastoma.
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INTRODUCTION
The mitogen-activated protein kinase (MAPK) kinase (MEK) protein
kinase occupies a crucial signaling node downstream of RAS and RAF
and directly upstream of extracellular signal–regulated kinase (ERK)
and, hence, has been the subject of intensive drug discovery activities.
Genetic and biochemical analyses ofMEK function have suggested that
MEK activity is necessary for the transforming and proliferative effects
of this pathway, suggesting that therapeutics that completely inhibit
MEK function may have utility in the treatment of cancers driven by
activation of the RAS-RAF-MEK-MAPK axis. The MAPK signaling
axis is involved in cancer initiation, maintenance, and resistance to
therapy.MAPK activation often occurs throughmutations and ampli-
fications in upstream receptor tyrosine kinases (RTKs) (ALK, EGFR,
and ERBB2), mutations in signal transduction genes (NRAS and
KRAS), and/or pathway regulatory genes (NF1 and PTPN11) (1).

MEK inhibitors, such as trametinib, suppress signaling through the
MAPKcascade displaying anticancer activity and are approved as single
agents for treatment of B-rapid accelerated fibrorsarcoma (BRAF)–
positive melanoma (2–4). Recently, MEK inhibitors, such as trame-
tinib, selumetinib, and binimetinib, have been included as a rational
polytherapy strategy for treating EML4–ALK (anaplastic lymphoma
kinase)–, EGFR (epidermal growth factor receptor)–, and KRAS-
mutant lung cancer, as well as for naïve and relapsed high-risk neuro-
blastoma containing hyperactivating RAS-MAPK mutations (5–13).
Here, we investigate the polytherapy hypothesis in ALK-positive neu-
roblastoma using trametinib and ALK inhibitors. Our aim was to
address whether MEK inhibition alone or in combination has ther-
apeutic value in neuroblastoma through evaluation of a large panel of
neuroblastoma cell lines.

Neuroblastoma is derived from the neural crest of the postganglionic
sympathetic nervous system and is a heterogeneous disease with a
span from spontaneous regression to untreatable progression. New
treatment approaches, including surgery, chemoradiotherapy, stem cell
transplantation, and immunotherapy, have improved cure rates, but
high-risk neuroblastoma patients are still challenging (14–17). Geneti-
cally, neuroblastoma is characterized by frequent deletion of parts of
the chromosomes 1p and 11q, gain of parts of 17q, and/orMYCN gene
amplification (18–20). The gene encoding the RTK ALK was identified
as a neuroblastoma predisposition gene, and constitutive active mu-
tations were found and verified to be active within the kinase domain
in both germline and somatically acquired neuroblastomas (21–25).
Moreover, the incidence of activating point mutations in ALK in re-
lapsed neuroblastoma patients is ~20 to 43% (8, 26–28). With this in
mind, the rationale for combinatorial treatment of neuroblastoma is
a well-grounded hypothesis given that previous preclinical combina-
tions of tyrosine kinase inhibitors (TKIs) with other kinase inhibitors
have shown good response in several cancer types (6, 29–33).

Here, we investigated whether growth of neuroblastoma cell lines
harboring a hyperactivated RAS-MAPK pathway is suppressed by
the U.S. Food and Drug Administration–approved MEK inhibitor
trametinib, either alone or as a partner in a combinatorial therapy
approach. We found that EML4-ALK–positive lung cancer cells and
RAS-MAPK pathway–mutated neuroblastoma cell lines are sensitive
toMEK-targeted therapies; however, MEK inhibition is not beneficial
in ALK-addicted neuroblastoma cells that have a hyperactivated RAS-
MAPK pathway. Rather, in these ALK-addicted neuroblastoma cells,
inhibition of MEK resulted in the phosphorylation of the mammalian
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tein kinase (SAPK)–interacting protein 1 (SIN1), resulting in increased
survival and growth that are dependent on AKT signaling activity.
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RESULTS
Neuroblastoma cell lines are differentially sensitive to the
MEK inhibitor trametinib
Trametinib is a specific and potent MEK inhibitor with a median
inhibitory concentration (IC50) of about 1 to 2 nM in cell-free assays
(2–4). Currently, trametinib is involved in several clinical trials
(ClinicalTrials.gov) either as a single agent or as part of a combina-
torial strategy. Trametinib has been suggested to be used with ALK
inhibitors in a rational polytherapy strategy for neuroblastoma. This
is a rational approach based on the robust activation of the RAS-
MAPK pathway upon ALK receptor ligation. Thus, we set out to test
this hypothesis experimentally. Because neuroblastoma is a heteroge-
neous disease, we first investigated the neuroblastoma cell lines used in
this study by defining their characteristics and oncogenic drivers. All
cell lines used were subjected to single-nucleotide polymorphism
(SNP) analysis using Affymetrix CytoScan HD arrays and sequenced
for mutations in ALK, RAS, and p53. Further, NF-1 and insulin-like
growth factor 1 receptor/insulin receptor (IGFR/IR) abundance was
investigated (figs. S1 and S2, Table 1, and table S1).

We first focused on the CLB-BAR, CLB-GE, CLB-GAR, and Kelly
neuroblastoma cell lines, which have previously been shown to beALK-
addicted (Fig. 1) (23, 34–36). The SK-N-AS and SK-N-BE cell lines have
activatingmutations in theNRAS gene and exhibit down-regulatedNF1
expression, respectively (Table 1 and fig. S1), leading to activation of the
RAS-MAPK pathway (37). Additional neuroblastoma cell lines used
Umapathy et al., Sci. Signal. 10, eaam7550 (2017) 28 November 2017
were IMR32, whose growth can be suppressed by insulin-like growth
factor receptor (IGFR) inhibitors (38), CLB-PE,which expressesmutant
p53 (Table 1), and SK-N-DZ, which expresses mutant p53 (R110L)
and has a high abundance of activated IGF receptors [see fig. S2B and
the Cosmic database (http://cancer.sanger.ac.uk/cell_lines)] (39).
Because these cell lines have not been sequenced at the whole-genome
level, additional oncogenic drivers may exist (Table 1).

After genetic characterization, cell lines were treated with either
theMEK inhibitor trametinib (10 nM) or theALK inhibitor lorlatinib
(30 nM). Proliferation was assessed for over 12 days. Proliferation of
the RAS-activated neuroblastoma cell lines (SK-N-AS and SK-N-BE)
was sensitive to trametinib treatment (Fig. 1, A and B). In contrast,
ALK-positive neuroblastoma cell lines (CLB-BAR, CLB-GE, CLB-
GAR, and Kelly) continued to grow upon trametinib treatment for
at least 12 days (Fig. 1, A and B). Increasing the dose to 100 nM,
10 times its IC50 value, resulted in growth inhibition of all cell lines
tested. In agreement with previous findings, all ALK-addicted neuro-
blastoma cells tested exhibited sensitivity to the ALK inhibitor lorlatinib
(Fig. 1, A andB) (36, 40).We also observed that neuroblastoma cell lines
with mutations in p53, such as CLB-PE and SK-N-DZ, or high expres-
sion of IGF, similar to the IMR32 line, were insensitive to trametinib
(Fig. 1B).

To further investigate the role of RAS-MEK-ERK signaling, the
CLB-BAR and CLB-GE ALK-addicted neuroblastoma cell lines were
treated with low nanomolar amounts of trametinib alone, lorlatinib
alone, or a combination of both (Fig. 1, C and D). The combination
of different concentrations of trametinib and lorlatinib did not result
in synergistic inhibition of proliferation in ALK-positive neuroblasto-
ma cell lines when compared to monotreatment (Fig. 1, C and D, and
table S2). Thus, these results suggest that neuroblastoma cell lines
 on O
c

ag.org/
Table 1. Mutationdata for the cell lines.Mutation data for selected critical genes for the nine neuroblastoma cell lines used in this study. MNA, MYCN-amplified;
HomZ., homozygote; mut, mutant; amp, amplification; ex, exon; expr., expression.
tobe
Cell line
 Genomic profile*
 ALK status (amp, mut ex23–25)
 MYCN status
 TP53 status mut ex5–9
 NRAS status
 NF1 expr.
r 29,
CLB-BAR
 MNA
 202
Amp. whole ALK exc. part
of i3 (nonamp). Note, exome
sequencing shows del ex4–11†
MYCN-amplified
 No mut in TP53
 No mut in NRAS
 High
0

CLB-GE
 MNA
 ALK amp. ALK mut F1174V
 MYCN-amplified
 No mut in TP53
 No mut in NRAS
 High
CLB-GAR
 11q-del
 2p gain with break
within ALK intron 1.
Mutation R1275Q
Not MYCN-amplified
 No mut in TP53
 No mut in NRAS
 High
Kelly
 MNA + 11q-del
 No amplification. 2p-gain.
Mutation F1174L
MYCN-amplified
 HomZ. Mut P177T
 No mut in NRAS
 High
SK-N-DZ
 MNA
 No mutation.
No amplification
MYCN-amplified
 No mut in TP53
 No mut in NRAS
 Intermediate
CLB-PE
 MNA + 11q-del
 2p gain. No mutation.
No amplification
MYCN-amplified
 HomZ. mut C176F
 No mut in NRAS
 High
IMR32
 MNA
 Amp. of ALK ex3–4 only.
No mutation
MYCN-amplified
 No mut in TP53
 No mut in NRAS
 High
SK-N-AS
 11q-del
 No mutation.
No amplification
Not MYCN-amplified
 No mut in TP53
 Mut in NRAS: Q61K
 Low
SK-N-BE
 MNA
 2p gain. No mutation.
No amplification
MYCN-amplified
 HomZ. mut C145F
 No mut in NRAS
 Low
*Genomic profile as defined in (74). †Genomic profile as defined in (75).
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exhibiting ALK-addicted, high-IGFR, and TP53-mutated character-
istics are not primarily dependent on RAS-MAPK pathway signaling
for survival and proliferation, in contrast to those with direct RAS-
MAPK pathway aberrations.

ALK-addicted neuroblastoma cell lines are dependent on
the AKT pathway
We next set out to investigate the mechanisms underlying the lack of
sensitivity of ALK-addicted neuroblastoma cell lines to MEK inhibi-
tion. Given that previous observations have indicated that the PI3K
(phosphatidylinositol 3-kinase)–mTOR–ERK5 signaling complex
is important for the survival of ALK-addicted neuroblastoma cells
(32, 33), we investigated the activity of theAKT-mTOR-ERK5pathway
in response to trametinib treatment. Upon treatment with trametinib,
ALK-addicted cell lines exhibited a twofold increased phosphorylation
(activation) of both AKT and ERK5 (Fig. 2, A to C). A similar increase
in AKT activity was observed in the Kelly cell line (fig. S3A) and the
p53-mutated cell lines SK-N-DZ and CLB-PE (fig. S3C) but not in
the RAS-MAPK pathway–mutant cell lines SK-N-AS and SK-N-BE
(fig. S3D). To further evaluate the dependence of AKT-ERK5 signaling,
we treated CLB-GE and CLB-BAR with PI3K (BEZ235) and ERK5
(XMD8-92) inhibitors. Both PI3K and ERK5 inhibitors reduced the
phosphorylation levels of AKT (at Ser473) and ERK5 (at Thr218/
Tyr220), respectively, but had no effect on the phosphorylation of
MAPK (fig. S4A). Together, our data reveal the importance of the
AKT signaling core in ALK-addicted neuroblastoma cells and that it
is potentiated in response to MEK inhibition.

Activation of AKT downstream from ligand-activated ALK is
enhanced upon treatment with trametinib
ALKAL1 (FAM150A and AUGb) and ALKAL2 (FAM150B and
AUGa) are potent ligands for ALK (41–43), prompting us to investi-
gate the effect of trametinib inhibition onALK signaling in response to
ALKAL1 stimulation. We used the IMR32 neuroblastoma cell line,
which harbors a ligand-responsive ALK in which exons 2 to 4 of
ALK are amplified (Table 1). In agreement with our previous findings
(41), we observed that stimulation of IMR32 cells with ALKAL1 led to
the phosphorylation of both AKT (Ser473) and ERK5 (Thr218/Tyr220)
that was abrogated in the presence of the ALK inhibitor lorlatinib in
combination with trametinib (Fig. 2D). Similar results were observed in
the ALK-addicted cell line CLB-GE (fig. S4B). In contrast, in ALKAL1-
stimulated IMR32 cells, inhibition of MEK with trametinib increased
the phosphorylation of both AKT and ERK5 close to twofold and re-
duced the phosphorylation of ERK1/2. This increase inAKTandERK5
phosphorylation was dependent on ALK activity because lorlatinib
inhibited this response and treatment of IMR32 cells with trametinib
alone showed no increase in either AKT or ERK5 phosphorylation
(Fig. 2D). These results indicate that the activity of the ALK itself is
important in the increased activation of AKT signaling core in response
to trametinib.

We next tested whether this response was unique to ALK-addicted
neuroblastoma cells by investigating the effect of trametinib on AKT
signaling in the EML4-ALK–positive H3122 and DFCI032 non–small
cell lung cancer (NSCLC) cell lines. Proliferation and AKT signaling
were examined in bothH3122 and DFCI032 cells after treatment with
either trametinib or lorlatinib. In contrast toALK-addicted neuroblas-
toma cells, we observed that (i) both EML4-ALK–positive H3122 and
DFCI032 NSCLC cells were sensitive to trametinib and that (ii) the
increased activation of AKT signaling seen upon trametinib treatment
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Fig. 1. Sensitivity of neuroblastoma cell lines toMEK inhibition by trametinib.
(A and B) Viability assessed over 12 days using the resazurin viability assay in neu-
roblastoma cell lines [CLB-BAR, CLB-GE, CLB-GA, and Kelly in (A) and SK-N-AS, SK-N-
BE, SK-N-DZ, IMR32, and CLB-PE in (B)] treated with either trametinib or lorlatinib, as
indicated. (C and D) Resazurin assay–based viability in neuroblastoma cell lines CLB-
BAR (C) and CLB-GE (D) treated with trametinib or lorlatinib alone or a combination
of trametinib and lorlatinib, as indicated. Data are means ± SE of fold relative fluo-
rescence units (RFU) relative to untreated cells from three independent experiments.
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inALK-addicted neuroblastoma cells was not observed in EML4-ALK–
positive H3122 or DFCI032 cell lines (fig. S5, A and B). These data sug-
gest that, in contrast to the efficacy of trametinib in ALK-positive
NSCLC, the increased activation of the AKT signaling core observed
inALK-addicted neuroblastoma cells potentiates ALK signaling output.

mTORC2 drives increased activation of AKT in ALK-addicted
neuroblastoma cells
Reactivation of RTK signaling is a plausible mechanism of increased
AKT activation after MEK inhibition. However, we performed a
phospho-RTK array on lysates from ALK-addicted neuroblastoma
cell lines after treatment with trametinib and found no significant
reactivation of any RTK (fig. S6A). Another possible mechanism for re-
activation of or enhanced signaling to AKT is through the RAS-PI3K-
AKT pathway; however, no increase in the abundance of RAS–GTP
(guanosine 5′-triphosphate)was detected upon treatment of trametinib,
although ERK1/2 phosphorylation was decreased (fig. S6B). Upon
RAS-mediated PI3K activation, PI3K phosphorylates phosphatidyl-
inositol 4,5-bisphosphate (PIP2), making phosphatidylinositol 3,4,5-
trisphosphate (PIP3) (44–46). PIP3 recruits proteins, such as AKT, to
the membrane through pleckstrin homology domain–mediated bind-
ing, leading to activation upon binding to newly formed PIP3. How-
ever, similar to the RAS-GTP assay, no increase or decrease in the PIP3/
PIP2 lipid ratio was observed upon treatment with trametinib, whereas
treatment with lorlatinib (the ALK inhibitor) lowered the PIP3/PIP2
ratio (fig. S6C). These observations suggest that the cross-talk between
the MAPK and AKT signaling pathways may be responsible for the
increased activation of the AKT signaling core in response to MEK
inhibition.

We next determined whether activation of AKT signaling in ALK-
addicted neuroblastoma cells in response to trametinib involves the
mTOR complexes that have previously been described as master
feedback regulators (47, 48) by combining trametinib treatment in
ALK-addicted neuroblastoma cell lines (CLB-BAR, CLB-GE, CLB-
GAR, and Kelly) with the PI3K inhibitor BEZ235, the mTORC1 and
mTORC2 inhibitor AZD8055, or the mTORC1 inhibitor everolimus.
As single applications, PI3K and mTORC1/2 inhibition (using BEZ235
and AZD8055, respectively) efficiently blocked the activation of AKT
(inferred by phosphorylation at Ser473), but blocking mTORC1 using
everolimus increasedAKTactivation similar to that seenwith trametinib
(Fig. 3A and fig. S3, A and B). Trametinib alone blocked the phosphoryl-
ation (activation) of ERKbut not of p70S6K,whereas BEZ235,AZD8055,
and everolimus blocked p70S6K but not the activation of ERK (Fig. 3A
and fig. S3, A and B). Treatment with everolimus increased the acti-
vation of AKT, indicating a role for mTORC1 in this feedback loop
(Fig. 3A and fig. S3, A and B). Together, trametinib and everolimus
appeared to have an additive effect on the activation status of AKT
(Fig. 3A and fig. S3, A and B). Further, increased activation of AKT
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Fig. 2. Specificity of AKT signaling core components in ALK-positive neuro-
blastoma cell lines. (A to C) Western blotting for the indicated proteins in lysates
from anaplastic lymphoma kinase (ALK)–positive neuroblastoma cell lines CLB-BAR
(A), CLB-GAR (B), and CLB-GE (C) treated with trametinib or lorlatinib for the indi-
cated time (h, hours). (D) Immunblotting of lysates from IMR32 cells pretreated with
trametinib, lorlatinib, or both for 1 hour and then stimulatedwith ALKAL1 for 30min.
Tubulin (A to C) or total pan–ERK (extracellular signal–regulated kinase) (D) served as
loading controls. Data are means ± SE from ≥3 independent experiments. *P < 0.05;
Student’s paired t test. wt, wild type.
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(phosphorylation at Ser473) after MEK inhibition was independent of
the phosphorylation of mTORC2 complex protein Rictor (at Thr1135)
(Fig. 3A and fig. S3, A and B). Furthermore, PI3K or mTORC1/2
inhibitors abrogated trametinib-induced activation of AKT, whereas
the mTORC1-selective inhibitor everolimus did not (Fig. 3A and fig.
S3, A andB), suggesting a role formTORC2 in the increased activation
of AKT signaling in ALK-addicted neuroblastoma cell lines. Assays
with the structurally dissimilar mTOR kinase inhibitors rapamycin
(an mTORC1 inhibitor) and KU-0063794 (an mTORC1/2 inhibitor)
further supported a role for mTORC2 (fig. S7).

To confirm the involvement of the mTORC2 complex in the
increased activation of AKT signaling core in ALK-addicted neuro-
blastoma cell lines upon treatment with trametinib, we inhibited
mTORC2 activation using small interfering RNA (siRNA) targeting
themRNA encoding Rictor (Fig. 3B). Compared with cells transfected
with control siRNA, cells transfected with one of two independent
Rictor siRNAs decreased the basal activation of AKT (Fig. 3B). In re-
sponse to trametinib, AKT activation increased in control but not in
Rictor siRNA–transfectedALK-positive neuroblastoma cells (Fig. 3B).
Together, these results suggest a critical role formTORC2 proteins in
MEK inhibitor–induced activation of AKT signaling.

Blocking MEK-ERK signaling enhances AKT activation
through SIN1 phosphorylation
Thus far, our data suggest that the RAS-MEK-ERKpathway inhibition
in ALK-addicted neuroblastoma cells lead to increased activation of
AKT signaling via mTORC2 in a manner that is dependent on the
presence of Rictor but independent of its phosphorylation at Thr1135.
However, residue Thr1135 is important for mTORC2 signaling (49);
thus, we explored additional components of the mTORC2 complex.
The mTORC2 complex includes Rictor, SIN1, and lethal with SEC13
protein 8 (LST8). We started with SIN1, a key regulator of mTORC2
(50, 51). Immunoblotting for phosphorylated SIN1 (at Thr86) in ALK-
addicted neuroblastoma cell lines CLB-BAR and CLB-GE revealed
that MEK or ERK1/2 inhibition (with trametinib or SCH772984, re-
spectively) increased phosphorylation of SIN1 but that PI3K inhibi-
tion (with BEZ235) alone or in combination with either the MEK or
ERK1/2 inhibitor reduced SIN1 phosphorylation (Fig. 4A). These ob-
servations, together with the results from treatment with AZD8055
inhibitor (Fig. 3A), suggest that RAS-MEK-ERK inhibitor–induced
activation ofAKT inALK-addicted neuroblastoma cells occurs through
the phosphorylation of SIN1. Knockdown of SIN1 expression using
RNA interference inhibited trametinib (MEK inhibitor)–induced AKT
activation in ALK-addicted neuroblastoma cells, further supporting
the involvement of SIN1 (Fig. 4B). Together, our results indicate that
RAS-MEK-ERKpathway inhibition leads to an increased activation of
AKT signaling via increased SIN1 Thr86 phosphorylation in ALK-
addicted neuroblastoma cells.

Treatment with trametinib abrogates tumor growth
in ALK-positive NSCLC xenografts but not in
ALK-addicted neuroblastoma xenografts
The effect of trametinib was evaluated in BALB/c-nu mice sub-
cutaneously injected with either human neuroblastoma cells (CLB-
BAR or SK-N-AS) or EML4-ALK NSCLC cells (H3122). Treatment
ofmice (by oral gavage)with trametinib inhibited the growth ofNSCLC
xenografts and that of RAS-mutant SK-N-AS neuroblastoma xeno-
grafts (Fig. 5, A and B), similar to the observed inhibition of prolif-
eration in our in vitro assays above and as in previously reported
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Fig. 3. Trametinib treatment activates AKT signaling via mTORC2. (A) ALK-
positive neuroblastoma cell lines CLB-BAR and CLB-GE were treated with trametinib,
BEZ235, AZD8055, or everolimus either alone or in combination, as indicated. Cell
lysates were immunoblotted for p-Rictor (Thr1135), Rictor, p-p70S6K, S6K, p-AKT
(Ser473), AKT, p-ERK1/2, and ERK1/2 antibodies. Actin was used as a loading control.
(B) CLB-BAR and CLB-GE cells were transfected with either scrambled control or two
independent siRNAs targeting Rictor before treatment with trametinib. Lysates were
separated by SDS–polyacrylamide gel electrophoresis (PAGE) and analyzed for Rictor,
p-Rictor (Thr1135), p-Akt (Ser473), AKT, p-ERK1/2, and ERK1/2 abundance by immuno-
blotting with actin as a loading control. Data are means ± SE from at least three
independent experiments. *P < 0.05; Student’s paired t test.
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xenografts (9, 11). In contrast, tumor growth inhibitionofALK-addicted
CLB-BAR neuroblastoma xenografts was not observed on trametinib
treatment when compared to vehicle-treated mice (Fig. 5C). Further,
immunoblotting revealed increased AKT phosphorylation in CLB-
BAR xenografts excised from mice treated with trametinib, although
a decreased phosphorylation of ERK1/2 was observed (fig. S8A), in line
with our findings in the cultured cells (Figs. 2 and 3). No sign of distress
in themicewas observed upon treatmentwith trametinib, and themean
body weights in the vehicle- and drug-treated mice were not signifi-
cantly different (fig. S8B). Thus, although treatment with trametinib is
beneficial in tumors harboring ALK fusion protein–driven NSCLC
and RAS-mutant neuroblastoma xenografts, it exhibits no beneficial
effect on ALK-addicted neuroblastoma xenografts.
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DISCUSSION
Whereasmonotherapy for cancers withALK fusions shows promising
results, the response of ALK-positive neuroblastoma patients to ALK
TKIs as a monotherapy is less encouraging, as reported for crizotinib
(5, 52). Lately, new suggestions have appeared from the neuroblas-
toma field with support from studies using EML4-ALK NSCLC cells
that combined inhibition of ALK and the MEK-ERK pathway may be
beneficial as a polytherapy in neuroblastoma patients (8, 9, 11, 53, 54).
However, our results with various neuroblastoma cell lines suggest that
the use ofMEK inhibitors is not effective as a single or a polytherapeutic
strategy in ALK-positive neuroblastoma.

RTKs signal to both the PI3K and theMAPK pathway, and cross-
talk between these two pathways is common, in which inhibition of
either pathway can lead to activation of other pathways (55–57). One
possible mechanism upon inhibition of MAPK proteins could be an
increased activity of PI3K via Ras-GTP; however, in our hands, no
increased PI3K activity was observed (44–46). Further, a number of
feedback mechanisms have been proposed, such as the RAF paradox
in melanoma (6, 58–62) and involvement of RTKs in the feedback
activationmechanisms (62, 63). Other studies have indicated the im-
portance of mTOR kinases and their enigmatic complex activation
(30, 61, 64–67). There are two different mTOR complexes, mTORC1
and mTORC2, that respond to different cues, such as growth factors
and nutrient availability. Dysregulation of mTOR complexes has been
observed in many diseases, such as cancer, obesity, and diabetes (66).
The mTORC2 complex consists of mTOR subunit, Rictor, SIN1,
mLST8, and Protor, and its complex regulation is unresolved. Re-
cently,it was shown that the mTORC2 subunit SIN1 is an AKT sub-
strate in 3T3-L1 adipocytes and human embryonic kidney (HEK)
293 cells, which positively regulates mTORC2 activity (68). It has also
been reported that, in HeLa cells, S6K is responsible for the phospho-
rylation of SIN1 in a negative feedback loop between mTORC1 and
mTORC2 that inhibits mTORC2 activity (51). Studies have indicated
that phosphorylation of SIN1 at T86 increases the kinase activity of
mTORC2, leading to the phosphorylation of AKT on the S473 site
(67). We observed that the inhibition of the RAS-MAPK pathway re-
sulted in an increased activation of AKT in ALK-addicted neuroblasto-
ma cell lines, likely occurring through the mTORC2 complex, and
identified the SIN1Thr86 phosphorylation ofmTORC2 as an important
molecular event. Further, reduction of SIN1 expression decreases phos-
phorylation of AKT on residue 473.

Previous studies have reported that increased AKT phosphoryl-
ation after mTORC1 inhibition is dependent on the phosphorylation
of Rictor at Thr1135 (65, 69), which agrees with our results here. We
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Fig. 4. Knockdown of SIN1 suppresses increased activation of AKT after MEK
inhibition. (A) Immunoblotting in whole-cell lysates from neuroblastoma cell
lines CLB-BAR and CLB-GE grown in complete growth medium and treated with
trametinib, SCH772984, BEZ235, or a combination thereof, as indicated. (B) Immuno-
blotting in whole-cell lysates from CLB-BAR and CLB-GE cells treated with trametinib
for 1 hour after transfection with scrambled control (siC) or one of two SIN1-targeted
siRNAs (si1 and si3). Lysates were separated by SDS-PAGE and analyzed for Rictor,
SIN1, p-AKT (Ser473), AKT, p-ERK1/2, and ERK1/2 expression by immunoblotting with
actin as a loading control. Data are means ± SE from at least three independent
experiments. *P < 0.05; Student’s paired t test.
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also found that Rictor was required as a partner in the mTORC2
complex but that the phosphorylation of Rictor at Thr1135 was not
necessary for the increased phosphorylation of AKT after MEK inhi-
bition. A similar increase in AKT phosphorylation was reportedly ob-
served after MEK inhibition in HER2-amplified and EGFR-mutant
cancer cells as a result of ErbB receptor family signaling (62). Another
report found that long-term treatment of breast cancer cells with inhi-
bitors that block both mTORC1 and mTORC2 induced the activation
of PI3K-AKT signaling and increased the protein abundance of EFGR,
HER2, HER3, and IRS1 (63). A challenging but critical task toward
optimizing therapeutic strategies is to understand these complexmolec-
ular mechanisms in an individual tumor.

Our results in neuroblastoma cells are in contrast to the behavior of
EML4-ALK fusion protein–addicted NSCLC lines that are sensitive to
MEKandERK1/2 inhibitors and donotmediate an increased activation
of the AKT protein, consistent with previous reports (9). The reason
behind this phenomenon is unclear; however, the oncogenic activity
of the fusion proteins, such as EML4-ALK, is still dependent on oligo-
merization and activation driven by the EML4 fusion partner. In con-
trast, the full-length ALK receptor is located in membranes, it can be
further activated by ligands, such as in the IMR32 cell line, although
tested cell lines here harbor a receptor with ligand-independent ALK
activity. Further, abrogating PI3K or ERK5 signaling does not increase
the activation of MAPK pathway in ALK-addicted cell lines (fig. S4A).
Abrogation of both ALK and PI3K or ERK5 activity synergistically re-
duces neuroblastoma cell proliferation and tumor growth (32, 33). It has
been suggested that increasedAKT signaling could attenuate anticancer
efficacy, confer resistance, and/or contribute to the development of
resistance (47, 48). Further, reducing mTORC2 activity decreases
HIF2amRNA and protein expression correlating with smaller and less
vascularized tumors from metastatic tumor xenografts (70).

Future investigation will be needed to clarify whether MEK or
ERK1/2 is responsible directly or indirectly for the phosphorylation
of Thr86 of SIN1 at the molecular level. Alternatively, they may nega-
tively regulate a SIN1 phosphatase mediating the cross-talk mecha-
nisms between the RAS-MAPK pathway and mTORC2. An additional
hypothesis is that MEK-ERK mediates a negative feedback loop on
SIN1 because the phosphorylation status of RICTOR, an mTORC2
complex member, at residue 1135 does not appear to be important
in ALK-positive neuroblastoma and has been reported to not affect
mTORC2 kinase activity (49, 69, 71, 72).

This study revealed that treatment of ALK-addicted neuroblastoma
cells or xenografts with MEK/ERK inhibitor does not abrogate cell or
Umapathy et al., Sci. Signal. 10, eaam7550 (2017) 28 November 2017
tumor growth. Our data are supported by reports indicating that other
ALK-addicted cell lines do not respond to binimetinib, an orally bio-
available inhibitor of MEK1/2 (IC50 = 12 nM) as a single agent or in
combination with ALK inhibitor, although binimetinib is an effective
inhibitor against neuroblastoma tumor cells with activatedRAS or low
NF1 expression (12, 13, 73). Our results highlight a mechanism upon
MEK/ERK inhibition in anALK-addicted neuroblastoma background
because treatment results in an increased activation of AKT-ERK5
signaling under these circumstances. These results indicate that a
combination of ALK inhibitors with MEK/ERK inhibitors is not mo-
tivated as a treatment option for ALK-addicted neuroblastoma in the
clinic, reflecting the need to fully understand the complex molecular
mechanisms involved before considering combinatorial treatment in
neuroblastoma patients.
MATERIALS AND METHODS
High-resolution SNP array
DNA from nine cell lines was analyzed for copy number changes using
CytoScan HD (Affymetrix Inc.). The CytoScan HD, with about 2.7 ×
106 milk probes, has a mean marker distance of one marker per 1 kilo–
base pair. The cell lines were CLB-BAR, CLB-GE, CLB-GAR, Kelly,
SK-N-DZ, CLB-PE, IMR32, SK-N-AS, and SK-N-BE. All CLB lines are
fromCentre Léon Bérard under amaterial transfer agreement (MTA).
The array experiments were performed according to the protocol pro-
vided by the supplier. Briefly, total genomic DNA (250 ng) was digested
with the restriction enzyme and ligated to adaptors. After ligation, the
template was subjected to polymerase chain reaction (PCR) amplifica-
tion using a generic primer that recognizes the adaptor sequence. The
purified PCR products were fragmented with deoxyribonuclease I,
labeled with biotin, and hybridized to a GeneChip Human Mapping
array. The hybridized probeswerewashed using theAffymetrix Fluidics
Station 450 and marked with streptavidin-phycoerythrin. The arrays
were scanned using a confocal laser scanner, GeneChip Scanner 3000
(Affymetrix). GeneChip Operating Software and GeneChip Genotyp-
ing Analysis Software (Affymetrix) were used for primary data analysis,
normalization against internal control features on the chip, genotype
calling, and quality control. Subsequent analysis was then performed
using copy number analyzer for GeneChip (CNAG 3.5.1, Genome
Laboratory, Tokyo University) (www.genome.umin.jp) featuring the
algorithm for allele-specific copy number analysis using AsCNAR
(anonymous references). In CNAG, the tumor samples were com-
pared in silico to the eight best-matched control samples (lowest SD)
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Fig. 5. Efficacy of trametinib in ALK-positive neuroblastoma and NSCLC xenograft models. (A toC) Growth curves of RAS-positive SK-N-ASneuroblastoma (A;P≤0.05),
EML4-ALK–positive H3122 non–small cell lung cancer (NSCLC) (B; P ≤ 0.05), or ALK-dependent CLB-BAR neuroblastoma (C; not significantly different by Student’s paired t test)
xenografts in vehicle- and trametinib-treated mice. Data are means ± SD from n = 6 mice in each group.
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available among a set of nonmatched healthy individuals. This set con-
tained both HapMap samples available from Affymetrix and our own
set of healthy control samples. We also used Chromosome Analysis
Suite software (ChAS v. 2.0.0.195, Affymetrix) to perform the cyto-
genetics analysis. All cases of chromosomal gain, loss, or amplification
were scored for both segmental and numerical aberrations, including
detailed information about the breakpoint positions when applica-
ble. Chromosomal positions (in table S1) are given according to hu-
man genome build GRCh37/hg19. Determination of genomic profile
(Table 1) was carried out essentially in the same way we have done
previously (74).

DNA sequencing of ALK, TP53, and NRAS regions
according to Sanger
Sanger sequencing was performed for DNAs from the nine cell lines.
The sequenced regions were exons 21 to 26 for ALK (cover amino
acid positions 1120 to 1313), exons 5 to 10 for TP53 (cover amino acid
positions 33 to 367), and exons 2 and 3 for NRAS (cover amino acid
positions 1 to 97). Touchdown PCR was performed in 10-ml reactions
using AmpliTaq Gold DNA Polymerase (Thermo Fisher Scientific),
forward and reverse primers (10 mM each), and 20 ng of cell line
DNA. The PCR program was performed as follows: 95°C for 5 min,
before 20 cycles of 95°C for 30 s, 65°C for 30 s (decreasing by 0.5°C in
every cycle), and 72°C for 1min, followed by 16 cycles of 95°C for 30 s,
55°C for 30 s, and 72°C for 1min, and ending with an extension step at
72°C for 7 min. The specificity of products was inspected by agarose
gel electrophoresis before they were purified using Agencourt AMPure
magnetic beads (Beckman Coulter) using the Biomek NX pipetting
robot (Beckman Coulter) and eluted in distilled H2O. Sequence PCR
was performed using the BDT (BigDye Terminator) v3.1 Cycle Se-
quencing kit (Applied Biosystems) in 10-ml reactions containing 6 ml
of 1:3 diluted PCR/template DNA and 1 ml each of BDT, 1× BDT
buffer, and 1.6 mM forward and reverse PCR primers. Sequence PCR
was run under the following conditions: 94°C for 3 min, followed
by 50 cycles of 96°C for 30 s, 50°C for 10 s, and 60°C for 3 min each.
Sequencing products were purified using CleanSeq magnetic beads
(Agencourt) using the Biomek NX and resuspended in Hi-Di form-
amide (10 ml; Applied Biosystems). Sequencing productswere separated
with gel electrophoresis on a 3730DNAanalyzer (AppliedBiosystems),
and the output data were viewed and analyzed using SeqScape v2.5
(Applied Biosystems). All of the fragments were analyzed with both
forward and reverse primers, and all of the findings were confirmed
by sequencing of a new PCR product. Sequencing was performed in-
house or at GATC Biotech AG, European Custom Sequencing Center
(Germany).

Antibodies, cell lines, and reagents
Pan-ERK1/2 antibody (1:5000; cat. #610123) was purchased from BD
Transduction Laboratories. Phospho-ALK (1:1000; Y1604; #3341),
phospo-ERK5 (1:1000; T218/Y220; cat. #3371), ERK5 (1:2000; cat.
#3372), phospho-AKT (1:5000; Ser473; #4060), AKT (1:10000; cat.
#9272), Rictor (1:1000; #2114), phospho-Rictor (1:1000; T1135;
#3806), SIN1 (1:000; #12860), phospho-SIN1 (1:1000; T86; #14716),
phospho-p70 S6 kinase (1:1000; Thr389; #9234), S6K (1:2000; cat.
#9202), p44/42 MAPK (1:5000; ERK1/2; #9102), b-actin (1:10000;
#4970), and tubulin (1:10000; #2144) antibodies were from Cell Signal-
ing Technology. Horseradish peroxidase (HRP)–conjugated secondary
antibody, goat anti-mouse immunoglobulin G (IgG), and goat anti-
rabbit IgG (1:5000) were purchased from Thermo Fisher Scientific.
Umapathy et al., Sci. Signal. 10, eaam7550 (2017) 28 November 2017
ALKAL (FAM150A)was used as described previously (41). Trametinib,
SCH772984, BEZ235, AZD8055, XMD8-92, and everolimus (RAD001)
were from Selleckchem. TheH3122 andDFCI032 cell lines were gifts
from R. George and P. Jänne (Dana-Farber Cancer Institute). All
neuroblastoma and NSCLC cell lines were cultured in RPMI 1640 or
Dulbecco’smodified Eagle’smediumwith 10% fetal bovine serum and
1% penicillin and streptomycin.

Immunoblotting
Cells were lysed on ice with hypotonic lysis buffer [20 mM tris-HCl
(pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton,
2.5 mM sodium pyrophosphate, 1 mM b-glycerophosphate, 1 mM
Na3VO4, and leupeptin (1mg/ml), with protease/phosphatase inhibitor
cocktail (Cell Signaling Technology)] for 15 min and then centrifuged
for 10 min at 4°C. The proteins were separated on 7.5% bis-acryl-tris
gels, transferred to polyvinylidene difluoride membranes (Millipore),
blocked in 5% bovine serum albumin (phosphoprotein blots) or 5%
milk, and immunoblotted against primary antibodies overnight at
4°C. Secondary antibodies were diluted 1:10,000 and incubated with
shaking at room temperature for 1 hour. Enhanced chemiluminescence
substrates were used for detection (GEHealthcare). Antibody dilutions
are noted in the section above.

Viability assay
Cell viability was assessed as relative redox metabolic activity using a
resazurin-based assay. CLB-BAR,CLB-GE, CLB-GA, Kelly, SK-N-AS,
SK-N-BE, SK-N-DZ, IMR32, and CLB-PE neuroblastoma cells (0.2 ×
105) were plated on collagen-coated 24-well plates. Cells were treated
with inhibitors, as indicated in the figures, andmonitored for 12 days,
refreshing the medium and inhibitor dose every third day. Cells were
incubated with 55 mM resazurin (Sigma-Aldrich) for 3 hours at 37°C.
Metabolized resazurin was analyzed by plate reader (TEKAN) as rel-
ative fluorescence. For combination treatments, 0.4 × 105 cells were
plated on collagen-coated 48-well plates, treated as indicated in the
figures, and monitored for 5 days. Cell viability was assessed as de-
scribed for single-inhibitor assays.

SiRNA transfection
CLB-BAR and CLB-GE cell lines were transfected with one of two du-
plex siRNAs targeting RICTOR and SIN1 (Stealth RNAi, Invitrogen)
according to the manufacturer’s protocols. Cells transfected with
scrambled siRNA (Invitrogen) were used as negative controls.

Phospho-RTK array
ALK-positive neuroblastoma cell line lysates (400 mg) were incubated
on human phospho-RTKmembrane array according to the manufac-
turer’s instruction (ARY001B, R&D Systems). Phospho-RTK abun-
dances were assessed using HRP-conjugated pan-phosphotyrosine
antibody, followed by chemiluminescence detection.

PIP mass quantification
Phospholipids were isolated fromCLB-BAR neuroblastoma cells, and
PIP abundance was measured using an enzyme-linked immuno-
sorbent assay kit (Echelon Biosciences) according to the manufac-
turer’s protocol.

Active Ras assay
For detecting active Ras, cells were plated on a 10-cmplate and treated
with trametinib for 3 hours. ActiveRas wasmeasured usingActive Ras
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turer’s protocol.

Subcutaneous xenografts
Female BALB/cAnNRj-Foxn1nu mice (Janvier Laboratory) at 5 to
6 weeks of age were subcutaneously injected with 2.5 × 106 CLB-BAR,
H3122, or SK-N-AS cells in serum-freemediummixed at a ratio of 1:1
withMatrigel Matrix (lot. #6140322, Corning), at a total injection vol-
ume of 100 ml, into the left flank. Once tumor volume reached an aver-
age of 100 to 150mm3, the mice were randomized to treatment groups.
Drug was given daily at 3 mg/kg body weight by oral gavage, continu-
ously for 12 days. Tumor volume was measured by calipers every other
day and calculated by the following equation: V = (p/6) × L × W2 (V,
volume; L, length; W, width). The vehicle for trametenib was 10%
Kollisolv PEG E 400 (06855, lot. #BCBQ6662V, Sigma-Aldrich)
and 10% Kolliphor EL (C5135, lot. #BCBQ5632V, Sigma-Aldrich).

Statistical analysis
Statistical analyses of the data were performed by Student’s paired
t test. All quantitative analysis were presented as means ± SD, as
indicated. Measurements were log-transformed to meet normality
assumption before analyses. P < 0.05 was considered significant.
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pathway would likely not benefit patients with ALK-addicted neuroblastoma.
mediated by AKT and mTORC2. Thus, although it seems to be a rational therapeutic target, inhibiting the RAS-MAPK
trametinib did not inhibit growth. Rather, MEK pathway inhibition by trametinib induced a prosurvival feedback signal 

positive NSCLC cell lines in mice and found that−ALK-addicted and RAS-mutant neuroblastoma cell lines and EML4-ALK
 . found that this may not be effective. The authors evaluated variouset alneuroblastomas. However, Umapathy 

pathway, which includes MEK, trametinib is proposed as a rational combination strategy for treating ALK-addicted
Because some cases, particularly relapses, of neuroblastoma often display increased activation of the RAS-MAPK 

Trametinib, an inhibitor of the kinase MEK, is clinically approved to treat patients with various types of cancers.
Feedback signaling complicates treatment
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