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             Spherical cows and the dangers of 
model-tweaking
Dynamic modeling of signaling networks 

provides mechanistic insights of cellular 

regulation by identifying systems-level 

emergent properties—that is, properties 

that arise from network components and 

their directional interactions—and it helps 

to discover drug targets and to understand 

drug action. Most cellular activities can be 

represented by chemical reactions; ordinary 

differential equation (ODE)–based models 

can capture their dynamics and produce 

testable predictions. Building ODE models 

for chemical reactions is straightforward if 

the initial concentrations of the reactants 

and the forward and reverse reaction rates 

are known. The complexity of regulatory bi-

ology, from molecules to cells to organisms, 

is daunting, so building simplifi ed models 

offers a practical solution. However, simpli-

fi cations often lead to “spherical cows,” a 

humorous description used by physicists to 

describe simplifi ed models that deviate sub-

stantially from reality. In regulatory biology, 

spherical cows can arise from two kinds of 

operations. In the fi rst, a simplifi ed model 

does not consider the details, producing a bi-

ologically unrealistic result. Typically, such 

a model will have far fewer equations than 

would a realistically detailed model. In the 

second, the unknown or diffi cult-to-measure 

model parameters are arbitrarily selected to 

obtain or “fi t” a desired output. Such opera-

tions produce models that are unlikely to 

provide mechanistic insights into biological 

processes or to predict the behavior of the 

system in a pathological context. Here, we 

describe a set of good practices for building 

models with incomplete knowledge of sys-

tem topology or kinetic parameters.

Einstein’s assertion in 1934 that “it can 

scarcely be denied that the supreme goal of 

all theory is to make the irreducible basic 

elements as simple and as few as possible 

without having to surrender the adequate 

representation of a single datum of experi-

ence” (1) is an excellent guiding principle 

for building pathways and networks that 

form the basis for systems of coupled ODEs 

that make a model. Consider the pathway 

from β-adrenergic receptors through protein 

kinase A to the transcription factor CREB. 

How much detail is required to describe 

the dynamics of this system? Minimally, 

four coupled equations could suffi ce; how-

ever, in a study of this pathway in regulat-

ing the function of kidney podocytes, we 

found that we needed to build a progres-

sively more complicated network with ad-

ditional components so that model simu-

lations matched experimentally observed 

time courses (2), thus adhering to Einstein’s 

dictum. We tested our model using standard 

signal transduction assays and comprehen-

sive error analysis; the “right-sized” model 

had the least error when considering system 

dynamics. Thus, error analysis provides a 

method to test the depth of detail a model 

needs to contain. To obtain the “right-sized” 

model that provides mechanistic insight into 

how the input-output (I/O) relations arise, it 

is insuffi cient to obtain just a match of the 

I/O relationship between theory and experi-

ments. Such matches need to be obtained for 

relationships between intermediary compo-

nents as well. When such concordance is 

achieved, the model provides deep insight 

into how information is processed within 

signaling networks to achieve the observed 

I/O relationships.

Building ODE models with 
incomplete parameter sets
A major problem in building dynamical 

models is the lack of experimentally mea-

sured parameter values. In most cases, the 

concentration of a protein of interest with-

in a cell is not known; however, it can be 

estimated either from protein purifi cation 

tables (3) or by quantitative immunoblot-

ting by using specifi c antibodies (4). To 

simultaneously estimate the abundance of 

large numbers of proteins, mass spectrom-

etry is useful. Although usually absolute 

protein concentrations cannot be obtained 

with mass spectrometry, changes in protein 

amounts can be easily measured (5).

Kinetic parameters for biochemical re-

actions, such as forward and reverse rate 

constants, have been rarely measured ex-

plicitly, and often these are determined with 

purifi ed proteins under conditions that are 

dissimilar from those within the cell. Es-

timating rate constants from time course 

data is an effective approach. Time course 

experiments performed with intact cells, 

combined with activity assayed separately 

under cell-free conditions, provide some of 

the best data for estimating rate constants to 

obtain kinetic parameters. Such parameter 

estimations can be readily done in Matlab 

by using curve-fi tting algorithms. Typically 

in our laboratory, the parameters are ob-

tained from a number of experimental sys-

tems and assays. One common criticism is 

that parameters obtained by combining data 

from multiple systems are “canonical” and 

may not be relevant to a specifi c cell type. 

However, our studies on the adenosine 3′,5′-
monophosphate (cAMP) pathway show that 

the concentration of cAMP predicted from 

simulations, by use of canonical parameters 

obtained from multiple cells and tissues (6), 

are in agreement with values measured in 

different types of cells (7).

Although obtaining initial concentra-

tions and kinetic parameters from different 

approaches or cell types is acceptable, pa-

rameterization of the model must be com-

pleted before simulations are started (Fig. 

1). Information about how and where the 

parameters were obtained and a detailed de-

scription of the initial conditions, including 

starting assumptions and simplifi cations, 

are necessary (8, 9). Large models can be 

constrained in a modular fashion (8). One 

should not change the conditions to match 

experimental observations once the simu-

lations are started; that is, one should not 

alter starting kinetic parameters in order to 
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obtain a desired simulation output. This is 

model “tweaking,” an impermissible opera-

tion that can lead to spherical cow models 

and provides no mechanistic insight into 

systems behavior.

Good models have minimal computa-

tional error. Smaller time steps will reduce 

errors at the expense of computational time. 

If there are parameters in very different tem-

poral domains, issues of stiffness (that is, 

numerical instabilities) can arise, leading to 

errors in calculation. Commercial software 

suites have solvers that deal with stiffness.

An appropriate way to determine the 

best parameter sets for the simulations is 

to conduct an unbiased parameter varia-

tion exercise. Massive parameter sweeps 

that until recently were not feasible are 

now quite inexpensive. Multiple parameter 

sets may yield dynamics that match the 

experimental observations. Such fi ndings 

often provide mechanistic insight regarding 

system redundancies and robustness that 

can produce phenotypic convergence (10). 

Sometimes no parameter sets will produce 

simulations that match experiments, or 

only biologically implausible parameters 

yield simulations that match experiments. 

In such cases, one should reexamine the 

topology of the model and add additional 

details (2). If the steps outlined in Fig. 1

are followed and the models are integrated 

with experiments, the ODE-based models 

can provide deep mechanistic insights into 

biological regulation.
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Fig. 1. Key steps in the development of detailed dynamical models to understand 
information-processing mechanisms within regulatory networks that control I/O 
relationships. In addition to the steps shown here, it is essential that all models that are 
based on chemical kinetics conform to microscopic reversibility principles. Once topology
and parameters for initial conditions are set without bias (that is, prior expectations for 
systems behavior), simulations should be run without altering these conditions. Parameter 
variation should be systematic, unbiased, and as comprehensive as possible. Topology 
should be altered on the basis of biological knowledge only when simulation outputs do not 
match experimental observations for I/O relationships; the entire process is iterative between 
model development, simulations, and experiments. 
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