RT Journal Article SR Electronic T1 Prostaglandin E2–EP2–NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms JF Science Signaling JO Sci. Signal. FD American Association for the Advancement of Science SP eaah6037 DO 10.1126/scisignal.aah6037 VO 10 IS 465 A1 Aoki, Tomohiro A1 Frȍsen, Juhana A1 Fukuda, Miyuki A1 Bando, Kana A1 Shioi, Go A1 Tsuji, Keiichi A1 Ollikainen, Eliisa A1 Nozaki, Kazuhiko A1 Laakkonen, Johanna A1 Narumiya, Shuh YR 2017 UL http://stke.sciencemag.org/content/10/465/eaah6037.abstract AB The rupture of intracranial aneurysms is life-threatening. Unfortunately, surgery is currently the only therapeutic option. Inflammation mediated by macrophages that infiltrate the arterial wall both causes intracranial aneurysms and promotes their progression. Aoki et al. delineated a self-amplifying signaling pathway in macrophages that would be expected to aggravate the inflammation that underlies the formation and progression of intracranial aneurysms. They found that signaling through the prostaglandin E receptor subtype 2 (EP2) activated the transcription factor NF-κB to induce the expression of the genes encoding COX-2, the enzyme that synthesizes the ligand for EP2, and MCP-1, an attractant for macrophages. Administering an EP2 antagonist to rats prevented the formation and progression of intracranial aneurysms, suggesting that targeting the EP2 receptor could be a pharmacological alternative to treat developing intracranial aneurysms.Intracranial aneurysms are common but are generally untreated, and their rupture can lead to subarachnoid hemorrhage. Because of the poor prognosis associated with subarachnoid hemorrhage, preventing the progression of intracranial aneurysms is critically important. Intracranial aneurysms are caused by chronic inflammation of the arterial wall due to macrophage infiltration triggered by monocyte chemoattractant protein-1 (MCP-1), macrophage activation mediated by the transcription factor nuclear factor κB (NF-κB), and inflammatory signaling involving prostaglandin E2 (PGE2) and prostaglandin E receptor subtype 2 (EP2). We correlated EP2 and cyclooxygenase-2 (COX-2) with macrophage infiltration in human intracranial aneurysm lesions. Monitoring the spatiotemporal pattern of NF-κB activation during intracranial aneurysm development in mice showed that NF-κB was first activated in macrophages in the adventitia and in endothelial cells and, subsequently, in the entire arterial wall. Mice with a macrophage-specific deletion of Ptger2 (which encodes EP2) or macrophage-specific expression of an IκBα mutant that restricts NF-κB activation had fewer intracranial aneurysms with reduced macrophage infiltration and NF-κB activation. In cultured cells, EP2 signaling cooperated with tumor necrosis factor–α (TNF-α) to activate NF-κB and synergistically induce the expression of proinflammatory genes, including Ptgs2 (encoding COX-2). EP2 signaling also stabilized Ccl2 (encoding MCP-1) by activating the RNA-stabilizing protein HuR. Rats administered an EP2 antagonist had reduced macrophage infiltration and intracranial aneurysm formation and progression. This signaling pathway in macrophages thus facilitates intracranial aneurysm development by amplifying inflammation in intracranial arteries. These results indicate that EP2 antagonists may therefore be a therapeutic alternative to surgery.